
Computer Communications and Networks

Software
Engineering
Frameworks for the
Cloud Computing
Paradigm

Zaigham Mahmood
Saqib Saeed Editors

 Computer Communications and Networks

For further volumes:
http://www.springer.com/series/4198

The Computer Communications and Networks series is a range of textbooks, monographs
and handbooks. It sets out to provide students, researchers and non-specialists alike with
a sure grounding in current knowledge, together with comprehensible access to the latest
developments in computer communications and networking.

Emphasis is placed on clear and explanatory styles that support a tutorial approach, so that
even the most complex of topics is presented in a lucid and intelligible manner.

 Zaigham Mahmood • Saqib Saeed
 Editors

 Software Engineering
Frameworks for the Cloud
Computing Paradigm

 ISSN 1617-7975
ISBN 978-1-4471-5030-5 ISBN 978-1-4471-5031-2 (eBook)
 DOI 10.1007/978-1-4471-5031-2
 Springer London Heidelberg New York Dordrecht

 Library of Congress Control Number: 2013936798

 © Springer-Verlag London 2013
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

 Printed on acid-free paper

 Springer is part of Springer Science+Business Media (www.springer.com)

 Editors
 Zaigham Mahmood
 School of Computing and Mathematics
 University of Derby
 Derby , UK

 Series Editor
 A.J. Sammes
 Centre for Forensic Computing
 Cranfi eld University
 Shrivenham Campus, Swindon , UK

 Saqib Saeed
 Department of Computer Sciences
 Bahria University
 Islamabad , Pakistan

www.springer.com

 To
 Rehana, Zoya, Imran, Hanya and Ozair
 For their love and support

vii

 Dr Zaigham Mahmood

 Dr Mahmood is a researcher and author. He has an M.Sc. in Mathematics, M.Sc. in
Computer Science and Ph.D. in Modelling of Phase Equilibria. Dr Mahmood is a
Senior Technology Consultant at Debesis Education UK, a researcher at the
University of Derby UK and Professor Extraordinaire at the North West University
in South Africa. He is, currently, also a Foreign Professor at NUST Islamabad
Pakistan.

 Professor Mahmood has published over 100 articles in international journals and
conference proceedings in addition to two reference texts on e-government and
three books on cloud computing viz Cloud Computing: Concepts, Technology and
Design; Cloud Computing for Enterprise Architectures and Cloud Computing:
Methods and Practical Approaches . He is also the Editor-in-Chief of the Journal of
E - Government Studies and Best Practices .

 Dr Mahmood is an active researcher; he also serves as editorial board member of
several journals, books and conferences; guest editor for journal special issues;
organiser and chair of conference tracks and workshops; and keynote speaker at
conferences. His research interests encompass subject areas including software
engineering, project management, enterprise computing, e-government studies and
cloud computing.

 Professor Mahmood can be reached at z . mahmood @ debesis . co . uk . He welcomes
your views and comments.

 Dr Saqib Saeed

 Dr Saqib Saeed is an Assistant Professor in the Computer Science department at
Bahria University, Islamabad, Pakistan. He holds a Ph.D. in Information Systems
from the University of Siegen, Germany, and a master’s degree in Software
Technology from Stuttgart University of Applied Sciences, Germany.

 Editors

viii

 Dr Saeed is also a certifi ed Software Quality Engineer from American Society
for Quality. He is a member of advisory boards of several international journals
besides being guest editor or co-editor of several special issues. Dr Saeed’s research
interests lie in the areas of software engineering, human-centred computing and
computer-supported cooperative work.

Editors

ix

 Overview

 Software engineering is a well-established discipline for the design and development
of large-scale software systems. It is a staged process that follows a software devel-
opment life cycle (SDLC) consisting of requirements, design and development
phases. Many methodologies and frameworks also exist for such developments,
and, depending on the application domain, there are proven function-oriented,
object-oriented and component-based methodologies as well as service-oriented
and agile frameworks. With the emergence of cloud computing, however, there is a
need for the traditional approaches to software construction to be adapted to take
full advantage of the cloud technologies.

 Cloud computing is an attractive paradigm for business organisations due to the
enormous benefi ts it promises, including savings on capital expenditure and avail-
ability of cloud-based services on demand and in real time. Organisations can
self- provision software development platforms, together with infrastructure if so
required, to develop and deploy applications much more speedily. Since the cloud
environment is dynamic, virtualised, distributed and multi-tenant, necessary charac-
teristics that cloud-enabled software must exhibit need to be inherently built into
the software systems. This is especially so if the software is to be deployed in the
cloud environment or made available for access by multiple cloud consumers. In
this context, it is imperative to recognise that cloud SDLC is an accelerated process
and that software development needs to be more iterative and incremental. Also, the
application architecture must provide characteristics to leverage cloud infrastruc-
ture capabilities such as storage connectivity and communications. It is important
that the chosen frameworks are suitable for fast cycle deployments. Methodologies
must also ensure satisfaction of consumer demands of performance, availability,
security, privacy, reliability and, above all, scalability and multi-tenancy. All this
suggests that software architects require a shift in mindset and need to adapt to new
approaches to design and deployment so that software systems are appropriate for
cloud environments.

 Preface

x

 This book, Software Engineering Frameworks for Cloud Computing Paradigm,
aims to capture the state of the art in this context and present discussion and guidance
on the relevant software engineering approaches and frameworks. Twenty-six
researchers and practitioners from around the world have presented their works,
case studies and suggestions for engineering software suitable for deployment in the
cloud environment.

 Objectives

 The aim of this book is to present current research and development in the fi eld of
software engineering as relevant to the cloud paradigm. The key objectives for this
book include:

• Capturing the state of the art in software engineering approaches for developing
cloud-suitable applications

• Providing relevant theoretical frameworks, practical approaches and current and
future research directions

• Providing guidance and best practices for students and practitioners of cloud- based
application architecture

• Advancing the understanding of the fi eld of software engineering as relevant to
the emerging new paradigm of cloud computing

 Organisation

 There are 15 chapters in Software Engineering Frameworks for Cloud Computing
Paradigm . These are organised in four parts:

• Part I: Impact of Cloud Paradigm on Software Engineering. This section focuses
on cloud computing paradigm as relevant to the discipline of software engineering.
There are three chapters that look at the impact of Semantic web, discuss cloud-
induced transformation and highlight issues and challenges inherent in cloud-
based software development.

• Part II: Software Development Life Cycle for Cloud Platform. This comprises
fi ve chapters that consider stages of software development life cycle, in particular
the requirements in engineering and testing of cloud-based applications. The chapters
also discuss the design and development of software with virtualisation and
multi-tenant distributed environment in mind.

• Part III: Software Design Strategies for Cloud Adoption. There are fi ve chapters
in this part that focus on feature-driven and cloud-aided software design and
present strategies for cloud adoption and migration. Development of applications
in the hybrid cloud environment and architectural patterns for migration of legacy
systems are also discussed.

Preface

xi

• Part IV: Performance of Cloud Based Software Applications. This section consists
of two chapters that focus on effi ciency and performance of cloud-based applications.
One chapter discusses the effective practices for cloud-based software engineering,
and the other chapter presents a framework for identifying relationships between
application performance factors.

 Target Audience

 Software Engineering Frameworks for Cloud Computing Paradigm has been developed
to support a number of potential audiences, including the following:

• Software engineers and application developers who wish to adapt to newer
approaches to building software that is more suitable for virtualised and multi-
tenant distributed environments

• IT infrastructure managers and project leaders who need to clearly understand
the requirement for newer methodologies in the context of cloud paradigm and
appreciate the issues of developing cloud-based applications

• Students and university lecturers of software engineering who have an interest in
further developing their expertise and enhancing their knowledge of the cloud-
relevant tools and techniques to architect cloud-friendly software

• Researchers in the fi elds of software engineering and cloud computing who wish
to further increase their understanding of the current practices, methodologies
and frameworks

 Suggested Uses

 Software Engineering Frameworks for Cloud Computing Paradigm can be used
as a primer and textbook on university courses on cloud computing and software
engineering. It can also be used as a reference text by practitioners in the fi eld of
software engineering.

 For adoption as a course text, we suggest the following programme of study for
a 12-week teaching semester format:

• Weeks 1–3: Part I
• Weeks 3–7: Part II
• Weeks 7–11: Part III
• Weeks 11–12: Part IV

Preface

xiii

 The editors acknowledge the help and support of the following colleagues during
the review and editing phases of this book:

• Dr Wasif Afzal, Bahria University, Islamabad, Pakistan
• Dr Daniel Crichton, Jet Propulsion Laboratory, California Inst Tech, USA
• Dr Ashraf Darwish, Helwan University, Cairo, Egypt
• Dr Shehzad Khalid, Bahria University, Islamabad, Pakistan
• Prof Francisco Milton Mendes, Rural Federal University of the Semi-Arid, Brazil
• Prof Mahmood Niazi, King Fahd University of Petroleum and Minerals, Dhahran
• Dr S. Parthasarathy, Thiagarajar College of Engineering, Madurai, India
• Dr Pethuru Raj, Wipro Technologies, Bangalore, India
• Dr Muthu Ramachandran, Leeds Metropolitan University, Leeds, UK
• Dr C. R. Rene Robin, Jerusalem College of Engineering, Chennai, India
• Dr Lucio Agostinho Rocha, State University of Campinas, Brazil
• Dr Lloyd G. Waller, University of the West Indies, Kingston, Jamaica
• Dr Fareeha Zafar, GC University, Lahore, Pakistan

 The editors would also like to thank the contributors of this book; the 26 authors
and co-authors, from academia as well as the industry from around the world, who
collectively submitted 15 chapters. Without their efforts in developing quality
contributions, conforming to the guidelines and meeting often the strict deadlines,
this text would not have been possible.

 Grateful thanks are also due to our family members for their support and
understanding.

 University of Derby, UK Zaigham Mahmood
 January 2013

 Acknowledgements

xv

 Part I Impact of Cloud Paradigm on Software Engineering

 1 Impact of Semantic Web and Cloud Computing Platform
on Software Engineering .. 3
 Radha Guha

 2 Envisioning the Cloud-Induced Transformations
in the Software Engineering Discipline ... 25
 Pethuru Raj , Veeramuthu Venkatesh, and Rengarajan Amirtharajan

 3 Limitations and Challenges in Cloud-Based
Applications Development .. 55
 N. Pramod , Anil Kumar Muppalla, and K. G. Srinivasa

 Part II Software Development Life Cycle for Cloud Platform

 4 Impact of Cloud Services on Software Development Life Cycle 79
 Radha Krishna and R. Jayakrishnan

 5 Cloud-Based Development Using Classic Life Cycle Model 101
 Suchitra Ravi Balasubramanyam

 6 Business Requirements Engineering for Developing
Cloud Computing Services ... 123
 Muthu Ramachandran

 7 Testing Perspectives for Cloud-Based Applications 145
 Inderveer Chana and Priyanka Chawla

 8 Testing in the Cloud: Strategies, Risks and Benefi ts 165
 Olumide Akerele , Muthu Ramachandran, and Mark Dixon

 Contents

xvi

 Part III Software Design Strategies for Cloud Adoption

 9 Feature-Driven Design of SaaS Architectures 189
 Bedir Tekinerdogan and Karahan Öztürk

 10 Impact of Cloud Adoption on Agile Software Development 213
 Sowmya Karunakaran

 11 Technical Strategies and Architectural Patterns
for Migrating Legacy Systems to the Cloud ... 235
 Sidharth Subhash Ghag and Rahul Bandopadhyaya

 12 Cloud-Aided Software Engineering: Evolving Viable
Software Systems Through a Web of Views ... 255
 Colin Atkinson and Dirk Draheim

 13 Development of Cloud Applications in Hybrid Clouds
with Support for Multi-scheduling .. 283
 Lucio Agostinho Rocha

 Part IV Performance of Cloud Based Software Applications

 14 Effi cient Practices and Frameworks for Cloud-Based
Application Development ... 305
 Anil Kumar Muppalla , N. Pramod, and K. G. Srinivasa

 15 A Methodology for Identifying the Relationships Between
Performance Factors for Cloud Computing Applications 331
 Luis Eduardo Bautista Villalpando , Alain April, and Alain Abran

 Index ... 359

Contents

xvii

 Contributors

 Alain Abran Department of Software Engineering and Information Technology ,
 ETS – University of Quebec , Montreal , Canada

 Olumide Akerele School of Computing and Creative Technologies, Faculty of Arts,
Environment and Technology , Leeds Metropolitan University , Leeds , UK

 Rengarajan Amirtharajan School of Electrical and Electronics Engineering ,
 SASTRA University , Thanjavur , Tamil Nadu , India

 Alain April Department of Software Engineering and Information Technology ,
 ETS – University of Quebec , Montreal , Canada

 Colin Atkinson Software Engineering Group , University of Mannheim , Mannheim ,
 Germany

 Suchitra Ravi Balasubramanyam Education and Research Unit , Infosys Limited ,
 Mysore , India

 Rahul Bandopadhyaya Infosys Labs, Infosys Limited, Bangalore, India

 Inderveer Chana Computer Science and Engineering Department , Thapar University ,
 Patiala , India

 Priyanka Chawla Computer Science and Engineering Department , Thapar
University , Patiala , India

 Mark Dixon School of Computing and Creative Technologies, Faculty of Arts,
Environment and Technology , Leeds Metropolitan University , Leeds , UK

 Dirk Draheim IT Service Management Division , University of Innsbruck ,
 Innsbruck , Austria

 Sidharth Subhash Ghag Infosys Labs , Infosys Limited , Pune , India

 Radha Guha ECE Department , PESIT , Bangalore , India

 R. Jayakrishnan Infosys Ltd. , Bangalore , India

xviii

 Sowmya Karunakaran Department of Management Studies, Indian Institute of
Technology (IIT) , Madras , India

 Radha Krishna Infosys Ltd. , Bangalore , India

 Anil Kumar Muppalla High Performance Computing Laboratory, Department
of Computer Science and Engineering , M S Ramaiah Institute of Technology ,
 Bangalore , India

 Karahan Öztürk British Sky Broadcasting , London , UK

 N. Pramod High Performance Computing Laboratory, Department of Computer
Science and Engineering , M S Ramaiah Institute of Technology , Bangalore , India

 Pethuru Raj Wipro Technologies , Bangalore , India

 Muthu Ramachandran School of Computing and Creative Technologies, Faculty
of Arts, Environment and Technology , Leeds Metropolitan University , Leeds , UK

 Lucio Agostinho Rocha Department of Computer Engineering and Industrial
Automation (DCA) at the School of Electrical and Computer Engineering (FEEC),
State University of Campinas , São Paulo , Brazil

 K. G. Srinivasa High Performance Computing Laboratory, Department of Computer
Science and Engineering , M S Ramaiah Institute of Technology , Bangalore , India

 Bedir Tekinerdogan Department of Computer Engineering , Bilkent University ,
 Ankara , Turkey

 Veeramuthu Venkatesh School of Electrical and Electronics Engineering ,
 SASTRA University , Thanjavur , Tamil Nadu , India

 Luis Eduardo Bautista Villalpando Department of Electronic Systems , Autonomous
University of Aguascalientes , Aguascalientes , Mexico

 Department of Software Engineering and Information Technology , ETS – University
of Quebec , Montreal , Canada

Contributors

 Part I
 Impact of Cloud Paradigm on Software

Engineering

3Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_1, © Springer-Verlag London 2013

Abstract Tim Berners-Lee’s vision of the Semantic Web or Web 3.0 is to trans-
form the World Wide Web into an intelligent Web system of structured, linked data
which can be queried and inferred as a whole by the computers themselves. This
grand vision of the Web is materializing many innovative uses of the Web. New
business models like interoperable applications hosted on the Web as services are
getting implemented. These Web services are designed to be automatically discov-
ered by software agents and exchange data among themselves. Another business
model is the cloud computing platform, where hardware, software, tools, and appli-
cations will be leased out as services to tenants across the globe over the Internet.
There are many advantages of this business model, like no capital expenditure,
speed of application deployment, shorter time to market, lower cost of operation,
and easier maintenance of resources, for the tenants. Because of these advantages,
cloud computing may be the prevalent computing platform of the future. To realize
all the advantages of these new business models of distributed, shared, and self-
provisioning environment of Web services and cloud computing resources, the tradi-
tional way of software engineering has to change as well. This chapter analyzes how
cloud computing, on the background of Semantic Web, is going to impact on the
software engineering processes to develop quality software. The need for changes in
the software development and deployment framework activities is also analyzed to
facilitate adoption of cloud computing platform.

Keywords  Software engineering • Semantic Web • Cloud computing platform 
• Agile process model • Extreme Cloud Programming

Chapter 1
Impact of Semantic Web and Cloud Computing
Platform on Software Engineering

Radha Guha

R. Guha (*)
ECE Department, PESIT, Feet Ring Road, BSK III Stage, 
560085, Bangalore, India
e-mail: radhaguha@pes.edu

4

1.1 Introduction

Since the inception of the World Wide Web (WWW) in 1990 by Tim Berners-Lee,
there has been a large warehouse of documents on the WWW, and the number of
documents is growing very rapidly. But, unless the information from these docu-
ments can be aggregated and inferred quickly, they do not have much use. Human
readers cannot read and make decisions quickly from large number of mostly irrel-
evant documents retrieved by the old search engines based on keyword searches.
Thus, Tim Berners-Lee’s vision is to transform this World Wide Web into an intel-
ligent Web system or Semantic Web [1–8] which will allow concept searches rather
than keyword searches. First, Semantic Web or Web 3.0 technologies will transform 
disconnected text documents on the Web into a global database of structured, linked
data. These large volumes of linked data in global databases will no longer be only
for human consumption but for quick machine processing. Just like a relational
database system can answer a query by filtering out unnecessary data, Semantic
Web technologies will similarly filter out information from the global database.
This capability requires assigning globally accepted explicitly defined semantics to
the data in the Web for linking. Then these linked data in the global database will
collectively produce intelligent information by software agents on behalf of the
human users, and the full potential of the Web can be realized.

Anticipating this transition of the Web where data integration, inference, and
data exchange between heterogeneous applications will be possible, new business
models of application deployment and delivery over the Internet have been concep-
tualized. Applications can be hosted on the Web and accessed via the Internet by
geographically dispersed clients. These XML (eXtensible Markup Language)-
based, interoperable applications are called Web services which can publish their
location, functions, messages containing the parameter list to execute the functions,
and communication protocols for accessing the service using it correctly by all. As
the same service will be catered to multiple clients, they can even be customized
according to clients’ likes. Application architecture and delivery architecture will be
two separate layers for these Web applications for providing this flexibility. XML-
based Web 2.0 and Web 3.0 protocols like Service-Oriented Architecture (SOA),
Simple  Object  Access  Protocol  (SOAP),  Web  Service  Description  Language 
(WSDL), and Universal Description, Discovery and Integration (UDDI) registry are 
designed to discover Web services on the fly and to integrate applications developed
on heterogeneous computing platforms, operating systems, and with varieties of
programming languages. Applications like Hadoop and Mashup [9, 10] can com-
bine data and functionalities from multiple external sources hosted as Web services
and are producing valuable aggregate new information and creating new Web
services. Hadoop and Mashup can support high-performance computing involving
distributed file system with petabytes of data and parallel processing on more than
hundreds to thousands of computers.

In another business model, the application development infrastructure like
processors, storage, memory, operating system, and application development tools

R. Guha

5

and software can all be delivered as utility to the clients over the Internet. This is
what is dubbed as cloud computing where a huge pool of physical resources hosted
on the Web will be shared by multiple clients as and when required. Because of
the many benefits of this business model like no capital expenditure, speed of
application deployment, shorter time to market, lower cost of operation, and easier
maintenance of resources for the clients, cloud computing may be the prevalent
computing platform of the future.

On the other hand, economies of all developed countries depend on quality software,
and software cost is more than hardware cost. Moreover, because of the involvement
of many parties, software development is inherently a complex process, and most of
the software projects fail because of lack of communication and coordination
between all the parties involved. Knowledge management in software engineering 
has always been an issue which affects better software development and its mainte-
nance. There is always some gap in understanding about what the business partners
and stakeholders want, how software designers and managers design the modules,
and how software developers implement the design. As the time passes, this gap in
understanding increases due to the increased complexity of the involvement of
many parties and continuously changing requirements of the software. This is more
so at the later stage when the software has to be maintained and no one has the
comprehensive knowledge about the whole system.

Now, with the inclusion of the Free/Libre/Open Source Software (FLOSS) [11]
pieces, Web services, and cloud computing platform, software development com-
plexity is going to increase manifold because of the synchronization needs with
third-party software and the increased communication and coordination complexity
with the cloud providers. The main thesis of this chapter is that the prevalent soft-
ware process models should involve the cloud providers in every step of decision-
making of software development life cycle to make the software project a success.
Also, the software developers need to change their software artifacts from plain text
documents to machine-readable structured linked data, to make them Semantic Web
ready. With this semantic transformation knowledge, management in software engi-
neering will be much easier, and compliance checking of various requirements
during project planning, design, development, testing, and verification can be
automated. Semantic artifacts will also give their product a competitive edge for auto-
matic discovery and integration with other applications and efficient maintenance
of their artifacts.

This chapter explores how Semantic Web can reduce software development
work with automatic discovery of distributed open source software components.
Also, Semantic Web techniques are explored that need to be incorporated in soft-
ware development artifacts to make them Semantic Web ready. Then, to realize the
many advantages of the cloud computing business model, how the well-established
software engineering process models have to adapt is analyzed. As the cloud pro-
vider is an external entity or third party, how difficult will be the interactions with
them? How to separate the roles of software engineers and cloud providers? As a
whole, cloud computing paradigm on Semantic Web background makes software
development project more complex.

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

6

In Sect. 1.2, background literatures on transformation to Semantic Web, cloud
computing platform, and software engineering are surveyed. In Sect. 1.3, first
emphasis is given on the need for producing software artifacts for the Semantic
Web. Secondly, how the software developers are coping with the changing trend of
application development on cloud platform with Web 2.0 and Web 3.0 protocols
and application deployment over the Web is reported. Thirdly, challenges of cloud
computing platform for software engineering are analyzed. In Sect. 1.4, an agile
process model which incorporates interaction with cloud provider is proposed and
analyzed. Section 1.5 concludes the chapter.

1.2 Literature Survey

1.2.1 Transformation to Semantic Web

World Wide Web was invented in 1990 by Tim Barners-Lee. Since then, the trans-
formation of the Web has been marked with Web 1.0, Web 2.0, and Web 3.0 tech-
nologies. In Web 1.0, the HTML (hypertext markup language) tags were added to
plain text documents for displaying the documents in a specific way on Web brows-
ers. Each document on  the Web  is  a  source of  knowledge or  a  resource.  In  the 
World  Wide  Web,  with  the  hypertext  transport  protocol  (HTTP),  if  the  URL 
(Universal  Resource  Locator)  of  any  Web  site  (document)  is  known,  then  that 
resource  can  be  accessed  or  browsed  over  the  Internet.  Domain  name  service 
(DNS) registry was developed to discover a machine on the Internet which hosts a 
Web page URL. This capability of Web 1.0 published  information pages which 
were static and read only. HTML’s <href> tag (a form of metadata) links two docu-
ments for human readers to navigate to related topics. In Web 1.0, for quick search
and retrieval, metadata (data about data) that describes the contents of electronic
documents or resources are added in the document itself, which has the same pur-
pose as indexes in a book or catalogues in a library. Search engines like Google and
Yahoo create metadata databases out of those metadata in Web documents to find
the documents quickly. In Web 1.0, the contents of the Web pages are static and the
meanings of the Web pages are deciphered by the people who read them. Web
contents are developed by HTML and user input is captured in Web forms in the
client machine and sent to remote server via a common gateway interface (CGI) for 
further processing.

In Web 2.0, XML (eXtensible Markup Language) was designed to give hierar-
chical structure to the document content, to transform it into data, and to transport
the document as data. Where HTML tags prescribe how to display the Web content
in client computer, the XML tags add another layer of metadata to query the
Web document for specific data. XML documents can be read and processed by
computers (by a parser) automatically and can be exchanged between applications
developed on heterogeneous computing platforms, operating systems, and varieties

R. Guha

7

of programming languages once they all know the XML tags used in the documents.
As for example, in order to use text generated by a Word Processor and data from 
spreadsheets and relational databases together, they all need to be transformed into
a common XML format first. This collaboration of applications is possible in a
closed community when all the applications are aware of the common XML tags.
Web 2.0 technologies also enabled pervasive or ubiquitous Web browsing involving
personal computers, mobile phones, and PDA (Personal Digital Assistant) running 
different operating systems like Windows, Macintosh, or Linux, connected to the
Internet via wired or wireless connections. Web 2.0 technologies like XML, DHTML, 
and AJAX (Asynchronous Java Script and XML) allowed two-way communica-
tions with dynamic Web contents and created social communities  like Facebook, 
MySpace, and Twitter. Web 2.0 has also seen the revolution of using the Web as the
practical medium for conducting businesses. An increasing number of Web-enabled
e-commerce applications like e-Bay and Amazon have emerged in this trend to buy
and sell products online.

But, for collaboration in the open, ever-expanding World Wide Web by all,
everybody on the Web has to agree on the meaning of the Web contents. XML alone
does not add semantics to the Web content. Thus, in Web 3.0, Resource Description 
Framework  (RDF)  protocol  is  designed  to  add  another  layer  of  metadata  to  add 
meaning or semantics to the data (text, images, audio, or video) inside the document
with  RDF  vocabularies  understood  by  machines.  As  computer  memory  is  not 
expensive anymore, this metadata can be verbose even for human understanding
instead of being only for machine understanding. Authors, publishers, and users all
can add metadata about a Web resource in a standardized format. This self- describing
data inside the document can be individually addressed by HTTP URI (Universal 
Resource Identifier) mechanism, processed and linked to other data from other doc-
uments, and inferred by machine automatically. URI is an expansion on the concept 
of Universal Resource Locator or URL and can both be a name and location. Search 
engines or crawlers will navigate the links and generate query response over the
aggregated linked data. This linked data will encourage reuse of information, reduce
redundancy, and produce more powerful aggregate information.

To this end, we need a standardized knowledge representation system [12, 13].
Modeling a knowledge domain using standard, shared vocabularies will facilitate
interoperability between different applications. Ontology is a formal representation
of knowledge as a set of concepts in a domain. Ontology components are classes,
their attributes, relations, restrictions, rules, and axioms. DublinCore, GFO (General 
Formal Ontology), OpenCyc/SUMO (Suggested Upper Merged Ontology), DOLCE 
(Descriptive Ontology for Linguistic and Cognitive Engineering), WordNet, FOAF 
(Friend of a Friend), SIOC (Semantically Interlinked Online Communities), SKOS 
(Simple  Knowledge  Organization  System),  DOAP  (Description  of  a  Project), 
vCard, etc., are the much used well-known ontology libraries of RDF vocabularies. 
For example,  implementation of DublinCore makes use of XML and a Resource 
Description Framework (RDF).

RDF  triples  describe  any  data  in  the  form  of  subject,  predicate,  and  object. 
Subject, predicate, and object all are URIs which can be individually addressed in 

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

8

the Web by the HTTP URI mechanism. Subject and object can be URIs from the 
same document or from two separate documents or independent data sources linked
by the predicate URI. Object can also be just a string literal or a value. RDF creates 
a graph-based data model spanning the entire Web which can be navigated or
crawled following the links by software agents. RDF schema (RDFS), Web ontology 
language (OWL), and Simple Knowledge Organization System (SKOS) are devel-
oped to write rules and express hierarchical relations, inference between Web
resources. They vary in their expressiveness, logical thinking, and hierarchical
knowledge  organization  from  being  more  limited  to  more  powerful  in  RDFS  to 
SKOS. For querying the RDF data written in RDFS, OWL, or SKOS, RDF query 
language named SPARQL has been developed.

RDF tags can be added automatically or semiautomatically by tools like RDFizers 
[7], D2R (Database to RDF), JPEG → RDF, and Email → RDF. Linked data browsers 
like  Disco,  Tabulator,  and  Marbles  are  getting  designed  to  browse  linked  data 
Semantic Web. Linked data search engines like Falcon and SWSE (Semantic Web 
search engine) are getting designed for human navigation, and Swoogle and Sindice
are getting designed for applications.

Figure 1.1 shows the Semantic Web protocol stacks (Wedding Cake) proposed 
by Tim Barners-Lee in 2000. The bottom of the Wedding Cake shows standards that 
are well defined and widely accepted, whereas the other protocols are yet to be
implemented in most of the Web sites. Unicode is a 16-bit code word which is large 
enough (216)  for  representing any characters  in any  languages  in  the world. URI 
(Universal Resource Identifier) is the W3C’s codification for addressing any objects
over  the  Web.  XML  is  for  structuring  the  documents  into  data,  and  RDF  is  the 
mechanism for describing data which can be understood by machines. Ontologies
are vocabularies from specific knowledge domain. Logic refers to making logical
inferences from associated linked data. Proof is keeping track of the steps of logical 
inferences. Trust refers to the origin and quality of the data sources. This entire
protocol stack will transform the Web into a Semantic Web global database of
linked data for realizing the full potential of the Web.

Fig. 1.1 Semantic Web
Wedding Cake [8]

R. Guha

9

1.2.2 Cloud Computing Platform

Cloud computing [14–16] is the most anticipated future trend of computing. Cloud 
computing is the idea of renting out server, storage, network, software technologies,
tools, and applications as utility or service over the Internet as and when required in
contrast to owning them permanently. Depending on what resources are shared 
and delivered to the customers, there are four types of cloud computing. In cloud
computing terminology, when hardware such as processors, storage, and network
are delivered as a service, it is called infrastructure as a service (IaaS). Examples of 
IaaS are Amazon’s Elastic Cloud (EC2) and Simple Storage Service (S3). When 
programming platforms and tools  like Java, Python,  .Net, MySQL, and APIs are 
delivered as a service, it is called platform as a service (PaaS). When applications 
are delivered as a service, it is called software as a service (SaaS).

Depending on the amount of self-governance or control on resources by the 
tenant, there are three types of cloud like internal or private cloud, external or public
cloud,  and  hybrid  cloud  (Fig.  1.2). In private cloud, an enterprise owns all the
resources on-site and shares them between multiple applications. In public cloud,
the enterprise will rent the resources from an off-site cloud provider, and these
resources will be shared between multiple tenants. Hybrid cloud is in the middle
where an enterprise owns some resources and rents some other resources from a
third party.

Cloud computing is based on Service-Oriented Architecture (SOA) of Web 2.0 
and Web 3.0 and virtualization [16–18] of hardware and software resources
(Fig. 1.3). Because of the virtualization technique, physical resources can be linked
dynamically to different applications running on different operating systems.
Because of the virtualization technique, physical resources can be shared among all
users, and there is efficient resource management which can provide higher resource
utilization and on-demand scalability. Increased resource utilization brings down

Fig. 1.2  Cloud computing platform

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

10

the cost of floor  space, power,  and cooling. Power  savings  is  the most  attractive 
feature of cloud computing and is the renewed initiative of environment-friendly green
computing or green IT movement of today. Cloud computing not only reduces cost 
of usage of resources but also reduces maintenance cost of resources for the user.

Cloud computing can support on-demand scalability. An application with occa-
sional demand for higher resources will pay for the higher resources only the time
it is used instead of leasing all the resources from the very beginning in anticipation
of future need. This fine-grained (hourly) pay-by-use model of cloud computing
is going to be very attractive to the customers. There are many other benefits of
cloud computing. Cloud infrastructure can support multiple protocols and change 
in business model for applications more rapidly. It can also handle increased perfor-
mance requirements like service scaling, response time, and availability of the
application, as the cloud infrastructure is a huge pool of resources like servers,
storage, and network and provides elasticity of growth to the end users.

With this business model of catering multiple clients with shared resources,
world’s  leading IT companies  like Microsoft, Google,  IBM, SalesForce, HP, and 
Amazon are deploying clouds (Fig. 1.2). Web services and applications like Hadoop
and Mashup can run on these clouds. Though there are many advantages of cloud
computing platform, there are few challenges regarding safety and privacy of
tenant’s information in cloud platform which can threaten the adoption of cloud
computing platform by the masses. If these few challenges can be overcome,
because of many of its advantages, this cloud computing model may be the prevalent
computing model of the future.

1.2.2.1 Safety and Privacy Issues in Cloud Computing Platform

All the resources of the cloud computing platform are shared by multiple tenants
(Fig. 1.4) over the Internet across the globe. In this shared environment, having trust
of data safety and privacy is of utmost importance to customers. Safety of data
means no loss of data pertaining to the owner of the data, and privacy of data means

Fig. 1.3 Virtual infrastructure [13]

R. Guha

11

no unauthorized use of the sensitive data by others. As cloud provider has greater
resource pool, they can easily keep copies of data and ensure safety of user data.
Privacy of data is of more concern in public cloud than in private cloud. In public 
cloud environment as data is stored in off-premise machines, users have less control
over the use of their data, and this mistrust can threaten the adoption of cloud
computing platform by the masses. Technology and law enforcement both should
protect privacy concerns of cloud customers [19, 20]. Software engineer must
build their applications as Web services which can guarantee to lessen this risk of
exposure of sensitive data of cloud customers.

Next, we look into the preexisting software development methodologies to develop
quality software products in traditional environment not involving Web services
and cloud computing platform.

1.2.3 Traditional Software Engineering Process

Here, we delve into preexisting software development methodologies first to
develop quality software products in traditional environment not involving Web
services and cloud computing platform. Over the last half-century, rapid advances

Fig. 1.4 Shared resources in cloud computing

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

12

of hardware technology such as computers, memory, storage, communication networks,
mobile devices, and embedded systems are pushing the need for larger and
more complex software. Software development not only involves many different
hardware technologies, it also involves many different parties like customers, stake-
holders, end users, and software developers. That is why software development is
an inherently complex procedure. Since 1968, software developers had to adopt
the engineering disciplines, i.e., systematic, disciplined, and quantifiable approach
to make software development more manageable to produce quality software
products. The success or quality of a software project is measured by whether it is
developed within time and budget and by its efficiency, usability, dependability, and
maintainability [21, 22].

Software engineering starts with an explicit process model having framework of
activities which are synchronized in a defined way. This process model describes or
prescribes how to build software with intermediate visible work products (documents)
and the final finished product, i.e., the operating software. The whole development
process of software from its conceptualization to operation and retirement is called
the software development life cycle (SDLC). SDLC goes through several framework 
activities like requirements gathering, planning, design, coding, testing, deployment,
maintenance, and retirement. Software requirements are categorized as functional,
contractual, safety, procedural, business, and technical specification. Accuracy of
requirements gathering is very important as errors in requirements gathering will
propagate through all other subsequent activities. Requirements arising from differ-
ent sectors need to be well documented, verified to be in compliance with each
other, optimized, linked, and traced. All software engineering process activities are
synchronized in accordance to the process model adopted for a particular software
development. There are many process models to choose from like water fall model,
rapid application development (RAD) model, and spiral model depending on  the 
size of the project, delivery time requirement, and type of the project. As an example,
development of an avionic embedded system will adopt a different process model
than development of a Web application. Another criterion for choosing a suitable
process model is its ability to arrest errors in requirements gathering.

Even though software engineering takes engineering approach, success of soft-
ware product is more difficult than products from other engineering domain like
mechanical engineering or civil engineering. This is because software is intangible
during its development. Software project managers use a number of umbrella activi-
ties to monitor software framework activities in a more visible way. These umbrella
activities are software project tracking and control, risk management, quality assurance,
measurements, configuration management, work-product or documents generation,
review, and reusability management. CMMI (Capability Maturity Model Integration) 
is a software process improvement model for software development companies by
comparing their process maturity with the best practices in the industry to deliver
quality software products.

Even after  taking all  these measures  for sticking  to  the plan and giving much 
importance to document generation for project tracking and control, many software
projects failed. Oftentimes volume of paper documents is too large for aggregating
information by humans. More than 50 % of software projects fail due to various

R. Guha

13

reasons like schedule and budget slippage, non-user-friendly interface of the
software, and non-flexibility for maintenance and change of the software. And the
reasons for all these problems are lack of communication and coordination between
all the parties involved.

Requirement changes of a software are the major cause of increased complexity,
schedule,  and  budget  slippage.  Incorporating  changes  at  a  later  stage  of  SDLC 
increases the cost of the project exponentially (Fig. 1.5). Adding more number
of programmers at a later stage does not solve the schedule problem as increased
coordination requirement slows down the project further. It is very important that
requirements gathering, planning, and design of the software are done involving all
the parties from the beginning.

That is the reason why several agile process models like Extreme Programming 
(XP) (Fig. 1.6), Scrum, Crystal, and Adaptive have been introduced in mid-1990s to 
accommodate continuous changes in requirements during the development of the
software. These agile process models have shorter development cycles where small
pieces of work are “time-boxed,” developed, and released for customer feedback,
verification, and validation iteratively. One time-box takes a few weeks to maximum
a month of time. Agile process model is communication intensive as customer
satisfaction is given the utmost importance. Agile software development is possible
only when the software developers are talented, motivated, and self-organized.
Agile process model eliminates the exponential increase of cost to incorporate
changes as in the waterfall model by keeping the customer involved throughout and
validating small pieces of work by them iteratively. These agile process models
work better for most of the software projects as changes are inevitable, and responding
to the changes is the key to the success of a project.

Fig. 1.5  Economics of software development

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

14

Figure 1.6 depicts the steps of agile process model named Extreme Programming 
(XP) for a traditional software development where the customer owns the develop-
ing platform or software developers develop in-house and deploy the software to the
customer after it is built. XP has many characteristics like user story card and CRC 
(class, responsibility, collaboration) card narrated during the requirements gather-
ing stage jointly by the customer and the software engineers. Customer decides the 
priority of each story card, and the highest priority card is only considered or “time-
boxed” for the current iteration of software development. Construction of code is 
performed by two engineers sitting at the same machine so that there is less scope
of errors  in  the code. This  is  called pair programming. Code  is  continuously  re-
factored or improved to make it more efficient.

In the following sections, analysis for the need for producing software develop-
ment artifacts for the Semantic Web and the challenges of the current business
model of application development and deployment involving Web 2.0 and Web 3.0
technologies and cloud computing platform are reported. Finally, methodologies to 
develop quality software that will push forward the advances of the cloud computing
platform have been suggested.

1.3 Need for Modification of Software Engineering: Analysis

1.3.1 Need for Semantic Web-Enabled Software Artifacts

Semantic Web effort has just started and not all are aware of it, even the IT profes-
sionals. The linked data initiative [7] that was taken in 2007 by a small group of
academic researchers from universities now has participants of few large companies
like BBC, Thompson Reuters, and Library of Congress who have transformed their 

Fig. 1.6  Extreme Programming process model

R. Guha

15

data for the Semantic Web. DBpedia is another community effort to transform the 
Wikipedia documents for Semantic Web. Sophisticated queries can be run on
DBpedia data and link to other Semantic Web data. Friend of a Friend (FOAF) is 
another project to link social Web sites and their people and describe what they
create or do. Federal and State governments are also  taking initiatives  to publish 
public data online. US Census data is one such semantic data source which can be 
queried and linked with other semantic data sources. Unless all government public 
data can be transformed for the Semantic Web, they will not be suitable for interop-
erable Web applications.

Figure 1.7 shows the current size of the linked data Web as of March 2009. Today
there are 4.7 billion RDF triples which are interlinked by 142 million RDF links. 
Anybody can transform their data in linked data standards and can link to the existing
linked data Web. In Fig. 1.7, the circles are nodes of independent data sources or
Web sites, and the arcs are their relationship with other data sources. The thicker
links specify more connections between the two data sources, and bidirectional
links mean both data sources are linked to each other.

Once the software engineers grasp the Semantic Web technologies and understand
their capabilities and their many advantages like interoperability, adaptability,
integration ability of open and distributed software components with other applications,
they will make their software artifacts Semantic Web ready. Once the software
artifacts are transformed into semantic artifacts software, maintainability will be

Fig. 1.7 Linking open data cloud diagram giving an overview of published data sets and their
interlinkage relationships [7]

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

16

much more efficient and cheaper. All requirements can be optimized, linked, and
traced. Aggregating of information from requirements document will be easy, and
impact analysis before actual changes are made can be done more accurately.
Increased maintainability of software will also increase reliability of the software.
Semantic Web services will be easy to discover on the Web, and that will give
a competitive edge to their products. Semantic Web services which can be linked
with other Web services will create new and more powerful software applications,
encourage reuse, and reduce redundancy.

1.3.2 Creating a Web Service

Benefits of Web services [23–26] are code reuse and speedy development of software
projects. But in order to use Web services from the Web, the application must create
a Web client which can interface with the Web services and request for services and
receive  services.  In  Fig.  1.8, the Service-Oriented Architecture (SOA) that has
emerged to deliver software as a service (SaaS) business model is illustrated.

An application programming interface (API) of Web service is first created as 
WSDL document using XML tags, for advertising to the world over the Internet. WSDL 
documents have five major parts. It describes data types, messages, port, operation
(class and methods), binding (SOAP message), and location (URL). WSDL documents 
need not be manually created. There are automatic tools like Apache Axis [25],
which will create the API from a Java programming code. Apache Axis is an open 
source, XML-based Web service framework.

Fig. 1.8 Service-Oriented Architecture for interoperability of services

R. Guha

17

After creating the WSDL document, a Web client to consume the Web service is 
needed. Web client  is created using SOAP to communicate request and response 
messages between  the  two applications. SOAP is an XML messaging format  for 
exchanging structured data (XML documents) over HTTP transport protocol and 
can be used for remote procedure call (RPC). SOAP structure has three parts: 
(1) envelop, (2) header, and (3) body. Body defines the message and how to process it.

Software engineers have to master XML language and other Web technologies
like WSDL and SOAP in addition to knowing a programming language like Java or 
C++ in order to use or create a Web service.

1.3.3 How SW Engineers Are Coping in Cloud Platform

This section surveys how software development industry is trying to survive in the
era of Web 2.0 and Web 3.0 with Web services and cloud computing. In reference
[27], the authors present framework activities for designing applications based on
discovery of Semantic Web service using software engineering methodologies.
They propose generating semiautomatic semantic description of applications
exploiting the existing methodologies and tools of Web engineering. This increases
design efficiency and reduces manual effort of semantically annotating the new
application composed from Web services of multiple enterprises.

In Reference [28], Salesforce.com finds that agile process model works better on
cloud computing platform. Before cloud computing, release of the software to the
user took time and getting feedback from the customer took more time which
thwarted the very concept of agile development. Whereas now, new releases of the
software can be uploaded on the server and used by the users immediately. Basically
in this chapter, what they have described is the benefits of software as a service
hosted on the Internet and how it complements agile computing methodology. They
have not considered the challenges of cloud computing in developing new business
software.

Cloud computing being  the newest hype of  the  IT  industry,  the challenges of 
software engineering on cloud computing platform have not been studied yet, and
no software development process model for cloud computing platform has been
suggested yet. We analyze the challenges of the cloud computing platform on
software development process and suggest extending the existing agile process
model, named Extreme Programming, to mitigate all the challenges in Sect. 1.3.4.

1.3.4 Impact of Cloud Computing on Software Engineering

In the rapidly changing computing environment with Web services and cloud
platform, software development is going to be very challenging. Software develop-
ment process will involve heterogeneous platforms, distributed Web services, and

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

18

multiple enterprises geographically dispersed all over the world. Existing software 
process models and framework activities are not going to be adequate unless inter-
action with cloud providers is included.

Requirements gathering phase so far included customers, users, and software
engineers. Now it has to include the cloud providers as well, as they will be supplying
the computing infrastructure and maintain them too. As the cloud providers only
will know the size, architectural details, virtualization strategy, and resource utilization
percentage of the infrastructure, planning and design phases of software development
also have to include the cloud providers. The cloud providers can help in answering
these questions about (1) how many developers are needed, (2) component reuse,
(3) cost estimation, (4) schedule estimation, (5) risk management, (6) configuration
management, (7) change management, and (8) quality assurance.

Because of the component reuse of Web services, the size of the software in
number of kilo lines of code (KLOC) or number of function points (FP) to be newly 
developed by the software engineer will reduce, but complexity of the project will
increase manyfold because of lack of documentations of implementation details
of Web services and their integration requirements. Only description that will be
available online is the metadata information of the Web services to be processed by
the computers automatically.

Only coding and testing phases can be done independently by the software
engineers. Coding and testing can be done on the cloud platform which is a huge 
benefit as everybody will have easy access to the software being built. This will
reduce the cost and time for testing and validation.

However, software developers need to use the Web services and open source
software freely available from the cloud instead of procuring them. Software
developers should have more expertise in building software from readily available
components than writing it all and building a monolithic application. Refactoring of
existing application is required to best utilize the cloud infrastructure architecture in
a cost-effective way. In the latest hardware technology, the computers are multi-core
and networked, and the software engineers should train themselves in parallel and
distributed computing to complement these advances of hardware and network
technology. Software engineers should train themselves in Internet protocols, XML,
Web service standards and layered separation of concerns of SOA architecture
of Internet, and Semantic Web technologies to leverage all the benefits of Web
2.0. Cloud providers will insist that software should be as modular as possible for 
occasional migration from one server to another for load balancing as required by
the cloud provider [16].

Maintenance phase should also include the cloud providers. There is a complete
shift of responsibility of maintenance of the infrastructure from software developers
to cloud providers. Now because of the involvement of the cloud provider, the
customer has to sign a contract with them as well so that the “Software Engineering 
code of ethics” is not violated by the cloud provider. In addition, protection and
security of the data is of utmost importance which is under the jurisdiction of the
cloud provider now.

Also, occasional demand of higher resource usage of CPU time or network from 
applications may thwart the pay-by-use model of cloud computing into jeopardy

R. Guha

19

as multiple applications may need higher resource usage all at the same time not
anticipated by the cloud provider in the beginning. Especially when applications are 
deployed as “software as a service” or “SaaS” model, they may have occasional
workload surge not anticipated in advance.

Cloud provider uses virtualization of resource technique to cater many customers 
on demand in an efficient way. For higher resource utilization, occasional migration 
of application from one server to another or from one storage to another may be
required by the cloud provider. This may be a conflict of interest with the customer
as they want dedicated resources with high availability and reliability of their
applications. To avoid this conflict, cloud providers need to introduce quality of
service provisions for higher-priority tenants.

Now we analyze how difficult will be the interaction between cloud providers
and the software engineers. The amount of interactions between software engineers
and cloud providers will depend on the type of cloud like public, private, or hybrid
cloud involvements. In private cloud, there is more control or self-governance by
the  customer  than  in  public  cloud.  Customer  should  also  consider  using  private 
cloud instead of using public cloud to assure availability and reliability of their
high-priority applications. Benefits of private cloud will be less interaction with
cloud provider, self-governance, high security, reliability, and availability of data
(Fig. 1.9). But cheaper computing on public cloud will always outweigh the benefits
of less complexity of SW development on private cloud platform and is going to
be more attractive.

1.4 Proposed SW Process Model for Cloud Platform

Innovative software engineering is required to leverage all the benefits of cloud
computing and mitigate its challenges strategically to push forward its advances.
Here an extended version of Extreme Programming (XP), an agile process model 
for cloud computing platform named Extreme Cloud Programming (Fig. 1.10), is
proposed. All the phases like requirements gathering, planning, design, construction,
testing, and deployment need interaction with the representatives from cloud provider.

The roles or activities by the cloud provider and SW developers are separated and
listed in Table 1.1. Resource accounting on cloud platform will be done by the cloud

Fig. 1.9  Economics vs. 
complexity of software

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

20

provider in the requirements gathering phase. Software architecture, software
architecture to hardware architecture mapping, interface design, data types design,
cost estimation, and schedule estimation of the project all should be done in collabo-
ration with the cloud provider. During the construction phase of the application, if 
Web services are integrated where many different enterprises are involved, then error
should be mitigated with the mediation of the cloud provider. Maintenance contract
with cloud provider will be according to the Quality of Service agreement.

A software metric is required for effort estimation of SW development using the
new  Extreme  Cloud  Programming  process  model.  This  metric  is  required  as 
American  consultant  Tom  DeMarco  aptly  stated  in  1997  in  his  book  [30] about

Fig. 1.10  Extreme Cloud Programming development on cloud computing [29]

Table 1.1 Software engineering-role separation [29]

Activity

Roles

Software developer Cloud provider

Requirements gathering Elicitation Resource accounting
Virtual machine

Analysis SW modules SW/HW architecture
Design Interface design Component reuse

Data types
Cost estimation
Schedule estimation

Construction Coding Implementation details
Integration of Web services

Testing Unit test Integration test
Integration test

Deployment Operation and maintenance

R. Guha

21

managing risk in software projects that “You cannot control what you cannot mea-
sure.” Constructive cost estimation model (COCOMO) is mostly used model for 
cost  estimation  of  various  software  development  projects.  In  COCOMO  model 
(Table 1.2), three classes of software projects have been considered so far. These
software projects are classified as  (1) Organic,  (2) Semidetached,  (3) Embedded 
according to the software team size, their experiences, and development (HW, SW,
and operations) constraints. We extend [29] this cost estimation model with a new
class of software project for cloud computing platform. In basic COCOMO model 
effort (man month), development time (months) and number of people required
are given by the following equations.

Effort Applied KLOC man months

Development Time Effort A

= −[]
=

a

c

b()

ppplied months

No of People Effort Applied Development Tim

() []
=

d

. / ee no.[]
The typical values of the coefficients a, b, c, d for different classes of software

projects are listed in Table 1.2. In anticipation of additional interaction complexity
with the cloud providers, coefficient a is increased to 4 for cloud computing
platform. Coefficients a, b for cloud computing are determined so that the effort
curve is steeper than the other three classes but is linear like the other three classes.
Similarly, coefficients c, d for cloud computing are determined so that the develop-
ment time curve is less steeper than the other three classes but is linear like the other
three classes. The coefficients a, b, c, d in cloud computing are readjusted to new
values of 4, 1.2, 2.5, and .3.

Because of component reuse, software development with cloud computing will
reduce  KLOC  (kilo  lines  of  code)  significantly.  We  deduce  new  KLOC = i * C + 
(KLOC) * C, where C is the % of component reuse and i is the coefficient adjustment
for new interface design effort.

Figure 1.11 plots software effort estimation for project size varying from 10 to
50 KLOC for all four classes of projects. We assumed 30 % component reuse in 
cloud computing case. If more percentage of component reuse is possible, it will
mitigate the higher interaction complexity in coefficient a and will be beneficial
for  cloud  computing  platform.  Figure  1.12 plots the corresponding software
development time estimation for all four classes of software projects. With 30 %
component reuse possibility, software development on cloud computing platform
will take least amount of time.

Table 1.2  COCOMO [29]

Software proj. a b c d

Organic 2.4 1.05 2.5 .38
Semidetached 3.0 1.12 2.5 .35
Embedded 3.6 1.2 2.5 .32
Cloud comp. 4 1.2 2.5 .3

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

22

1.5 Conclusion

The development of Semantic Web or Web 3.0 can transform the World Wide Web
into an intelligent Web system of structured, linked data which can be queried and
inferred as a whole by the computers themselves. This Semantic Web capability is
materializing many innovative use of the Web such as hosting Web services and
cloud computing platform. Web services and cloud computing are paradigm shifts
over traditional way of developing and deploying of software. This will make software
engineering more difficult as software engineers have to master the Semantic Web

Fig. 1.11  Extended COCOMO for SW effort estimation [29]

Fig. 1.12  Extended COCOMO for SW dev. time [29]

R. Guha

23

skills for using open source software on distributed computing platform and
they have to interact with a third party called the “cloud provider” in all stages of
software processes. Automatic discovery and integration with Web services will
reduce the amount of work in terms of line of code (LOC) or function points (FP) 
required for developing software on cloud platform but there will be added semantic
skill requirements and communication and coordination requirements with the
cloud providers which makes software development project more complex.

First, the Semantic Web techniques are explored on what the software developers 
need to incorporate in their artifacts in order to be discovered easily on the Web to
give their product a competitive edge and for efficient software integration and
maintenance purposes. Then, the need for changes in the prevalent software process
models is analyzed to suggest that they should incorporate the new dimension of
interactions with the cloud providers and separate roles of software engineers and
cloud providers. A new agile process model is proposed in this chapter which
includes the anticipated interactions requirement with the cloud provider which
will mitigate all the challenges of software development on cloud computing
platform and make it more advantageous to develop and deploy software on the
cloud computing platform.

Cloud computing being  the anticipated future computing platform, more soft-
ware engineering process models need to be researched which can mitigate all
its challenges and reap all its benefits. Also, safety and privacy issues of data in
cloud computing platform need to be considered seriously so that cloud computing
is truly accepted by all.

References

  1. Barners-Lee, T.: Future of the web. http://dig.csail.mit.edu/2007/03/01 (2007)
  2. Guha, R.: Toward the intelligent web systems. In: Proceedings of IEEE CS, First International 

Conference on Computational Intelligence, Communication Systems and Network, pp. 459–463. 
IEEE, Los Alamitos (2009)

  3. Handler, J., Shadbolt, N., Hall, W., Berners-Lee, T., Weitzner, D.: Web science: an interdisci-
plinary approach to understanding the web. Commun. ACM 51(7), 60–69 (2008)

  4. Chong,  F.,  Carraro,  G.:  Architecture  Strategies  for  Catching  the  Long  Tail.  Microsoft 
Corporation, Redmond (2006)

 5. Banerjee, J., Aziz, S.: SOA: the missing link between enterprise architecture and solution
architecture. SETLabs Brief. 5(2), 69–80 (2007)

 6. Barners-Lee, T.: Linked data. http://www.w3.org/DesignIssues/LinkedData.html (2012)
  7. Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. Special issue on linked 

data. Int. J. Semant. Web Inf. Syst. (IJSWIS). http://tomheath.com/papers/bizer-heath-berners- 
lee-ijswis-linked-data.pdf (2012)

 8. Niemann, B., et al.: Introducing Semantic Technologies and the Vision of the Semantic Web,
SICoP White Paper (2005)

  9. HADOOP: http://en.wikipedia.org/wiki/Hadoop (2010)
 10. Taft, D.: IBM’s M2 Project Taps Hadoop for Massive Mashups. www.eweek.com (2010)
 11. Wikipedia: Free and open source software. http://en.wikipedia.org/wiki/Free_and_open- source_

software. Accessed July 2012

1  Impact of Semantic Web and Cloud Computing Platform on Software Engineering

http://dig.csail.mit.edu/2007/03/01
http://www.w3.org/DesignIssues/LinkedData.html
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://en.wikipedia.org/wiki/Hadoop
http://www.eweek.com/
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://en.wikipedia.org/wiki/Free_and_open-source_software

24

 12. Wikipedia: Web Ontology Language. http://en.wikipedia.org/wiki/Web_Ontology_Language.
Accessed July 2012

 13. Code{4}lib: Library Ontology. http://wiki.code4lib.org/index.php/Library_Ontology Accessed
July 2012

 14. Sun Microsystem: Introduction to Cloud Computing Architecture, White Paper, 1st edn. (2009)
 15. Sun Microsystem: Open Source & Cloud Computing: On-Demand, Innovative IT on a Massive 

Scale (2012)
 16. Singh, A., Korupolu, M., Mahapatra, D.: Server-storage virtualization:  integration and  load 

balancing  in  data  centers.  In:  IEEE/ACM  Supercomputing  (SC)  Conference.  IEEE  Press, 
Piscataway (2008)

 17. VMWARE: Virtualization overview. www.vmware.com (2012)
 18. Reservoir  Consortium:  Resources  and  Services  Virtualization  Without  Barriers.  Scientific 

Report (2009)
 19. Pearson, S.: Taking Account of Privacy when Designing Cloud Computing Services. HP Labs, 

Bristol (2009)
 20. Jansen, W.A.: Cloud Hooks: Security and Privacy Issues in Cloud Computing. NIST
 21. Pressman, R.: Software Engineering: A Practitioner’s Approach, 7th edn. McGraw-Hill Higher

Education, New York (2009)
 22. Sommerville, I.: Software Engineering, 8th edn. Pearson Education, Harlow (2006)
 23. Cavanaugh, E.: Web services: benefits, challenges, and a unique, visual development solution. 

www.altova.com (2006)
 24. Nickull, D., et al.: Service Oriented Architecture (SOA) and Specialized Messaging Patterns (2007)
 25. Web services-Axis: axis.apache.org/axis (2012)
 26. W3C: Web services Description Language (WSDL) Version 2.0 (2012)
 27. Brambilla,  M.  et  al.:  A  Software  Engineering  Approach  to  Design  and  Development  of 

Semantic Web Service Applications (2006)
 28. Salesforce.com:  Agile  Development  Meets  Cloud  Computing  for  Extraordinary  Results. 

www.salesforce.com (2009)
 29. Guha, R., Al-Dabass, D.: Impact of Web 2.0 and cloud computing platform on software engineer-

ing. In: Proceedings of 1st International Symposium on Electronic System Design (ISED) (2010)
 30. DeMarco, T., Lister, T.: Waltzing with Bears: Managing Risk on Software Projects. Dorset 

House Publishing Company, Incorporated, New York (2003)

R. Guha

http://en.wikipedia.org/wiki/Web_Ontology_Language
http://wiki.code4lib.org/index.php/Library_Ontology
http://www.vmware.com/
http://www.altova.com/
http://axis.apache.org/axis
http://www.salesforce.com/

25Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_2, © Springer-Verlag London 2013

 Abstract The software engineering fi eld is on the move. The contributions of software
solutions for IT-inspired business automation, acceleration, and augmentation are enor-
mous. The business values are also rapidly growing with the constant and consistent
maturity and stability of software technologies, processes, infrastructures, frameworks,
architectural patterns, and tools. On the other hand, the uncertainty in the global econ-
omy has a direct bearing on the IT budgets of worldwide organizations. That is, they
are expecting greater fl exibility, responsiveness, and accountability from their IT
division, which is being chronically touted as the cost center. This insists on shorter
delivery cycles and on delivering low-cost yet high- quality solutions. Cloud computing
prescribes a distinguished delivery model that helps IT organizations to provide quality
solutions effi ciently in a manner that suits to evolving business needs. In this chapter,
we are to focus how software- development tasks can get greatly simplifi ed and stream-
lined with cloud-centric development processes, practices, platforms, and patterns.

 Keywords Cloud computing • Software engineering • Global software development •
 Model-driven architecture • MDA • Lean methodology • Distributed computing

2.1 Introduction

 The number of pioneering discoveries in the Internet space is quite large. In the
recent past, the availability of devices and tools to access online and on-demand
professional and personal services has increased dramatically. Software has been

 Chapter 2
 Envisioning the Cloud-Induced Transformations
in the Software Engineering Discipline

 Pethuru Raj, Veeramuthu Venkatesh, and Rengarajan Amirtharajan

 P. Raj (*)
 Wipro Technologies , Bangalore 560035 , India
 e-mail: peterindia@gmail.com

 V. Venkatesh • R. Amirtharajan
 School of Electrical and Electronics Engineering, SASTRA University ,
 Thanjavur, Tamil Nadu , India

26

pervasive and persuasive. It runs on almost all kinds of everyday devices that are
increasingly interconnected as well as Internet-connected. This deeper and extreme
connectivity opens up fresh possibilities and opportunities for students, scholars,
and scientists. The devices at the ground level are seamlessly integrated with cyber
applications at remote, online, on-demand cloud servers. The hardware and software
infrastructure solutions need to be extremely scalable, nimble, available, high-
performing, dynamic, modifi able, real-time, and completely secure. Cloud computing
is changing the total IT landscape by presenting every single and tangible IT resource
as a service over any network. This strategically sound service enablement decimates
all kinds of dependencies, portability, interoperability issues, etc.

 Cloud services and applications are becoming very popular and penetrative these
days. Increasingly, both business and IT applications are being modernized appro-
priately and moved to clouds to be subsequently subscribed and consumed by global
user programs and people directly anytime anywhere for free or a fee. The aspect
of software delivery is henceforth for a paradigm shift with the smart leverage of
cloud concepts and competencies. Now there is a noteworthy trend emerging fast to
inspire professionals and professors to pronounce the role and responsibility of
clouds in software engineering. That is, not only cloud-based software delivery but
also cloud-based software development and debugging are insisted as the need of
the hour. On carefully considering the happenings, it is no exaggeration to say that
the end-to-end software production, provision, protection, and preservation are to
happen in virtualized IT environments in a cost-effective, compact, and cognitive
fashion. Another interesting and strategic pointer is that the number and the type of
input/output devices interacting with remote, online, and on-demand cloud are on
the climb. Besides fi xed and portable computing machines, there are slim and sleek
mobile, implantable, and wearable devices emerging to access, use, and orchestrate
a wider variety of disparate and distributed professional as well as personal cloud
services. The urgent thing is to embark on modernizing and refi ning the currently
used application development processes and practices in order to make cloud-based
software engineering simpler, successful, and sustainable.

 In this chapter, we discuss cloud-sponsored transformations for IT and leveraging
clouds for global software development and present a refl ection on software
engineering . The combination of agility and cloud infrastructure for next- generation
software engineering , the convergence of service and cloud paradigms, the amalga-
mation of model-driven architecture, and the cloud and various mechanisms for
assisting cloud software development are also discussed. At the end, cloud platform
solutions for software engineering are discussed, and software engineering challenges
with respect to cloud environments are also presented.

2.2 Cloud-Sponsored Transformations for IT

 The popularity of the cloud paradigm is surging, and it is overwhelmingly accepted
as the disruptive, transformative, and innovative technology for the entire IT
fi eld. The direct benefi ts include IT agility through rationalization, simplifi cation,

P. Raj et al.

27

higher utilization, and optimization. This section explores the tectonic and seismic
shifts of IT through the cloud concepts.

• Adaptive IT – There are a number of cloud-inspired innovations in the form of
promising, potential, and powerful deployment; delivery; pricing; and consump-
tion models in order to sustain the IT value for businesses. With IT agility setting
in seamlessly, business agility, autonomy, and adaptivity are being guaranteed
with the adoption and adaption of cloud idea.

• People IT – Clouds support centralized yet federated working model. It
operates at a global level. For example, today there are hundreds of thousands
of smartphone applications and services accumulated and delivered via
mobile clouds. With ultrahigh broadband communication infrastructures
and advanced to compute clouds in place, the vision of the Internet of
devices, services, and things is to see a neat and nice reality. Self-, surroundings-,
and situation-aware services will become common, plentiful, and cheap;
thereby, IT promptly deals with peoples’ needs precisely and delivers on
them directly.

• Green IT – The whole world is becoming conscious about the power energy
consumption and the heat getting dissipated into our living environment. There
are calculated campaigns at different levels for arresting climate change and for
sustainable environment through less greenhouse-gas emission. IT is being
approached for arriving at competent green solutions. Grid and cloud computing
concepts are the leading concepts for green environment. Especially the smart
energy grid and the Internet of Energy (IoE) disciplines are gaining a lot of
ground in order to contribute decisively for the global goal of sustainability.
The much-published and proclaimed cloud paradigm leads to lean compute,
communication, and storage infrastructures, which signifi cantly reduce the
electricity consumption.

• Optimal IT – There are a number of worthwhile optimizations happening in the
business-enabling IT space. “More with less” has become the buzzword for both
business and IT managers. Cloud enablement has become the mandatory thing
for IT divisions as there are several distinct benefi ts getting accrued out of this
empowerment. Cloud certainly has the wherewithal for the goals behind the IT
optimization drive.

• Next-Generation IT – With a number of delectable advancements in wireless and
wired broadband communication space, the future Internet is being positioned as
the central fi gure in conceiving and concretizing people-centric discoveries and
inventions. With cloud emerging as the new-generation compute infrastructure,
we will have connected, simplifi ed, and smart IT that offers more infl uential and
inferential capability to humans.

• Converged, Collaborative, and Shared IT – The cloud idea is fast penetrating
into every tangible domain. Cloud’s platforms are famous for not only software
deployment and delivery but also for service design, development, debugging,
and management. Further on, clouds, being the consolidated, converged, and
centralized infrastructure, are being prescribed and presented as the best bet
for enabling seamless and spontaneous service integration, orchestration, and

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

28

collaboration. With everything (application, platform, and infrastructure) are
termed and touted as publicly discoverable, network-accessible, self-describing,
autonomous, and multitenant services, clouds will soon become the collaboration
hub. Especially business-aware, process-centric, and service-oriented compos-
ites can be easily realized with the cloud-based collaboration platform.

• Real-Time IT – Data’s variety, volume, and velocity are on the climb. The current
IT infrastructures are insuffi cient in order to extract actionable insights out of
pouring data. Hence, the emergence of big data computing and analysis
technologies are given due diligence and attention. These fast-maturing technolo-
gies are able to accomplish real-time transition from data to information and to
knowledge. Cloud is the optimized, automated, and virtualized infrastructure for
big data computing and analytics. That is, with the infrastructure support from
clouds, big data computing model is to see a lot of improvements in the days
ahead so that the ultimate goal of real-time analytics can be realized very fl uently
and fl awlessly.

2.3 Leveraging Clouds for Global Software
Development (GSD)

 Globalization and distribution are the two key concepts in the IT fi eld. Software
development goes off nations’ boundaries and tends toward places wherein quality
software engineers and project managers are available in plenty. On-site, off- shoring,
near-shoring, etc., are some of the recent buzzwords in IT circles due to these devel-
opments. That is, even a software project gets developed in different locations as
the project team gets distributed across the globe. With the sharp turnarounds in a
communication fi eld, a kind of tighter coordination and collaboration among team
members are possible in order to make project implementation successful and
sustainable. In-sourcing has paved the way for outsourcing with the maturity of
appropriate technologies. As widely known, software sharply enhances the com-
petitive advantage and edge for businesses. Hence, global software development
(GSD) has become a mandatory thing for the world organizations. Nevertheless,
when embarking on GSD, organizations continue to face challenges in adhering to
the development life cycle. The advent of the Internet has supported GSD by
bringing new concepts and opportunities resulting in benefi ts such as scalability,
fl exibility, independence, reduced cost, resource pools, and usage tracking. It has
also caused the emergence of new challenges in the way software is being delivered
to stakeholders. Application software and data on the cloud are accessed through
services, which follow SOA principles.

 GSD is actually the software-development process incorporating teams spread
across the globe in different locations, countries, and even continents. The driver for
this sort of arrangement is by the fact that conducting software projects in multiple
geographical locations is likely to result in benefi ts such as cost reduction and

P. Raj et al.

29

reduced time to market, access to a larger skill pool, proximity to customer, and
24-h development by following the sun. But, at the same time, GSD brings challenges
to distributed software-development activities due to geographic, cultural, linguistic,
and temporal distance between the project development teams.

 Because of the distance between the software-development teams, GSD
encounters certain challenges in terms of collaboration, communication, coordination,
culture, management, organizational, outsourcing, development process, develop-
ment teams, and tools. The real motive for using the cloud for supporting GSD is
that the cloud idea thrives as it is closely related to the service paradigm. That is,
services are created, provisioned, and delivered from cloud-based service platforms.
Since SOA runs a mechanism for development and management of distributed
dynamic systems, and it evolved from the distributed-component-based approach, it
is argued that cloud has the innate potential and strength to successfully cater for the
challenges of GSD where a project is developed across different geographical
locations. GSD challenges can be overcome through SOA. This will contribute to
increased interoperability, diversifi cation, and business and technology alignment.
Cloud as the next-generation centralized and service-oriented infrastructure is capable
of decimating all the internal as well as externally imposed challenges.

• Global Software Development (GSD) in Cloud Platforms [1] – Clouds offer
instant resource provisioning, fl exibility, on-the-fl y scaling, and high availability
for continuously evolving GSD-related activities. Some of the use cases include .

• Development Environments – With clouds, the ability to acquire, deploy, confi gure,
and host development environments become “on-demand.” The development
environments are always on and always available to the implementation teams
with fi ne-grained access control mechanisms. In addition, the development
environments can be purpose-built with support for application-level tools, source
code repositories, and programming tools. After the project is done, these can also
be archived or destroyed. The other key element of these “on-demand” hosting
environments is the fl exibility through its quick “prototyping” support. Prototyping
becomes fl exible, in that as new code and ideas can be quickly turned into work-
able proof of concepts (PoCs) and tested.

• Developer Tools – Hosting developer tools such as IDEs and simple code editors
in the cloud eliminates the need for developers to have local IDEs and other
associated development tools, which are made available across time zones and
places.

• Content Collaboration Spaces – Clouds make collaboration and coordination
practical, intuitive, and fl exible through easy enabling of content collaboration
spaces, modeled after the social software domain tools like Facebook, but centering
on project-related information like invoices, statements, RFPs, requirement doc-
uments, images, and data sets. These content spaces can automate many project-
related tasks such as automatically creating MS Word versions of all imported
text documents or as complex as running work fl ows to collate information from
several different organizations working in collaboration. Each content space can
be unique, created by composing a set of project requirements. Users can invite

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

30

internal and external collaborators into this customized environment, assigning
appropriate roles and responsibilities. After the group’s work is “complete,” their
content space can be archived or destroyed. These spaces can be designed to sup-
port distributed version control systems enabling social platform conversations
and other content management features.

• Continuous Code Integration – Compute clouds let “compile-test-change” software
cycle on the fl y do continuous builds and integration checks to meet strict quality
checks and development guidelines. They can also enforce policies for custom-
ized builds.

• APIs and Programming Frameworks – Clouds force developers to embrace
standard programming model APIs where ever possible and adhere to style
guides, conventions, and coding standards in meeting the specifi c project require-
ments. They also force developers to embrace new programming models and
abstractions such as .NET Framework, GWT, Django, Rails, and Spring Framework
for signifi cantly increasing the overall productivity. One more feature of using
clouds is that they enforce constraints, which push developers to address the
critical next-generation programming challenges of multicore computing, parallel
programming, and virtualization. As explained earlier in the chapter, global
software development is picking up fast, and the emergence of clouds is to boost
the GSD activities further.

2.4 A Refl ection on Software Engineering

 Radha Guha writes in [2] that over the last half-century, there have been robust and
resilient advancements in the hardware engineering domain. That is, there are radical
and rapid improvisations in computers, memory, storage, communication networks,
mobile devices, and embedded systems. This has been incessantly pushing the need
for larger and more complex software. Software development not only involves
many different hardware elements, it also involves many different parties like end
users and software engineers. That is why software development has become such
an inherently complicated task. Software developers are analyzing, articulating, and
adopting the proven and prescribed engineering disciplines. That is, leveraging
systematic, disciplined, and quantifi able approach to make software development
more manageable to produce quality software products. The success or quality of a
software project is measured by whether it is developed within the stipulated time
and agreed budget and by its throughput, user-friendliness, consumability, depend-
ability, and modifi ability.

 Typically, a software engineering engagement starts off with an explicit and
elegant process model comprising several formally defi ned and synchronized
phases. The whole development process of software from its conceptualization to
implementation to operation and retirement is called the software-development
life cycle (SDLC). SDLC goes through several sub-activities like requirement’s gath-
ering, planning, design, coding, testing, deployment, maintenance, and retirement.

P. Raj et al.

31

These activities are well synchronized in accordance to the process model adopted
for a particular software development . There are many process models to choose
from like water fall model, rapid application development (RAD) model, and spiral
model depending on the size of the project, delivery time requirement, and type of
the project. The development of an avionic embedded system will adopt a different
process model from development of a Web application.

 Even though software engineering [3] takes the engineering approach, the success
of software products is more diffi cult than products from other engineering domains
like mechanical engineering or civil engineering. This is because software is
intangible during its development. Software project managers use a number of
techniques and tools to monitor the software building activities in a more visible
way. These activities include software project tracking and control, risk management,
quality assurance, measurements, confi guration management, work product or
document’s generation, review, and reusability management.

 Even after taking all these measures for sticking to the plan and giving much
importance to document generation for project tracking and control, many software
projects failed. More than 50 % of software projects fail due to various reasons
like schedule and budget slippage, non-user-friendly interface of the software, and
non- fl exibility for maintenance and change of the software. Therefore, there is a
continued and consistent focus on simplifying and streamlining software implementa-
tion. In this chapter, we are to see some of the critical and crucial improvements in
software engineering process with the availability of cloud infrastructures.

 The Evolutions and Revolutions in the Software Engineering Field – There are a
number of desirable and delectable advancements in the fi eld of software engineering
in order to make the tough task of software construction easier and quicker. This
section describes the different levels and layers in which the software engineering
discipline and domain evolve.

 At the building-block level , data, procedures, classes, components, agents, aspects,
events, and services are the key abstraction and encapsulation units for building and
orchestrating software modules into various types of specifi c and generic software.
Services especially contribute in legacy modernization and migration to open
service-oriented platforms (SOPs) besides facilitating the integration of disparate,
distributed, and decentralized applications. In short, building blocks are the key
ingredient enabling software elegance, excellence, and evolution. In the recent past,
formal models in digital format and service composites are evolving fast in order
to further simplify and streamline the tough task of software assembly and imple-
mentation. As software complexity is on the rise, the need for fresh thoughts and
techniques is too on the climb.

 On the language level , a bevy of programming languages (open source as well as
proprietary) were produced and promoted by individuals, innovators, and institu-
tions. Even, there are efforts underway in order to leverage fi t-for-purpose languages
to build different parts and portions of software applications. Software libraries are
growing in number, and the ideas of software factory and industrialization are
picking up fast lately. Service registry and repository are an interesting phenome-
non for speeding up software realization and maintenance. Programming languages

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

32

and approaches thrive as there are different programming paradigms such as object
orientation, event- and model-driven concepts, componentization, and service
orientation. Further on, there are script languages in the recent past generating and
getting a lot of attention due to their unique ability of achieving more with less code.
Formal models in digitalized format and service composites are turning out to be
a blessing in disguise for the success and survival of software engineering. There
are domain- specifi c languages (DSLs) that could cater to the specifi c demands of
domains quite easily and quickly.

 As far as development environments are concerned, there are a number of diverse
application building platforms for halving the software developmental complexity
and cost. That is, there are a slew of integrated development environments (IDEs),
rapid application development (RAD) tools, code generators and cartridges, enabling
CASE tools, compilers, debuggers, profi lers, purpose-specifi c engines, generic and
specifi c frameworks, best practices, key guidelines, etc. Plug and play mechanism
has gained a lot with the overwhelming adoption of eclipse IDE for inserting and
instantiating different language compilers and interpreters. The long- standing
objectives of platform portability (Java) and language portability (.NET Framework)
are being achieved at a middleware level. There are standards- compliant toolkits
for process modeling, simulation, improvement, investigation, and mapping. Services
as the well-qualifi ed process elements are being discovered, compared, and orches-
trated for partial or full process automation.

 At the process level , waterfall is the earliest one, and thereafter there came a
number of delicious variations in software-development methodology with each
one having both pros and cons. Iterations, increments, and integrations are being
touted as the fundamental characteristics for swifter software production. Agile pro-
gramming is gaining a lot of ground as business changes are more frequent than
ever before and software complexity is also growing. Agility and authenticity in
software building are graciously achieved with improved and constant interactions
with customers and with the enhanced visibility and controllability on software
implementation procedures. Agility, being a well-known horizontal technique,
matches, mixes, and merges with other paradigms such as service-oriented program-
ming and model-driven software development to considerably assist in lessening
the workload of software developers and coders. Another noteworthy trend is that
rather than code-based implementation, confi guration-based software production
catches up fast.

 At the infrastructural level, the cloud idea has brought in innumerable transfor-
mations. The target of IT agility is seeing a neat and nice reality and this in turn
could lead to business agility. Technically, cloud-inspired infrastructures are virtual-
ized, elastic, self-servicing, automated, and shared. Due to the unique capabilities
and competencies of cloud IT infrastructures (in short, clouds), all kinds of enterprise
IT platforms (development, execution, management, governance, and delivery)
are being accordingly manipulated and migrated to be hosted in clouds, which are
extremely converged, optimized, dynamic, lean, and green. Such meteoric movement
decisively empowers application platforms to be multitenant, unifi ed, and central-
ized catering to multiple customers and users with all the enhanced productivity,

P. Raj et al.

33

extensibility, and effectiveness. In other words, cloud platforms are set to rule and
reign the IT world in the days to unfold. In other words, platforms are getting
service-enabled so that any service (application, platform, and infrastructure) can
discover and use them without any barriers. Service enablement actually expresses
and exposes every IT resource as a service so that all kinds of the resource’s incom-
patibilities are decimated completely. That is, resources readily connect, concur,
compose, and collaborate with one another without any externally or internally
imposed constrictions, contradictions, and confusions. In a nutshell, the unassailable
service science has come as a unifying factor for the dilapidated and divergent
IT world.

 In summary, the deeply dissected, discoursed, and deliberated software-
development discipline is going through a number of pioneering and positive
changes as described above.

2.5 Combination of Agility and Cloud Infrastructure
for Next-Generation Software Engineering

 As indicated previously, there have been many turns and twists in the hot fi eld of
software engineering. It is an unquestionable fact that the cloud paradigm, without
an iota of doubt, has impacted the entire IT elegantly and exceedingly. Besides
presenting a bright future on the aspect of centralized deployment, delivery, and
management of IT resources, the cloud idea has opened up fresh opportunities and
possibilities for cloud-based software design, development, and debugging in a
simplifi ed and systematic fashion. That is, with the overwhelming adoption and
adaption of cloud infrastructures (private, public, community, and hybrid), produc-
ing and preserving enterprise-scale, mission-critical, and value-added software are
going to be defi nitely distinct. There are four key drivers that unanimously elevate
the software development to be advanced to an accomplished in a cloud. These are:

• Time, Cost, and Productivity – The developer community is being mandated to
do more, quicker, and with fewer resources.

• Distributed Complex Sourcing – Due to various reasons, IT project team
members are geographically dispersed.

• Faster Delivery of Innovation – The focus is on enabling architects and developers
to think ingeniously in order to deliver business value.

• Increasing Complexity – In today’s world, an enterprise-scale project easily
consumes several million lines resulting in more complexity.

 In order to reduce complexity, resources, cost, and time considerably, profes-
sionals and professors are vigorously and rigorously striving and searching for
incredibly inventive solutions. Newer concepts, process optimization, best practices,
fresh programming models, state-of-the-art platforms, design patterns and metrics,
and advanced tools are being increasingly unearthed and utilized for lessening the
software development workload. Researchers are continuously at work in order to

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

34

discover competent and compact methods and mechanisms for simplifying and
streamlining the increasingly multifaceted tasks of constructing and conserving
next-generation software systems. The major benefi ts of agile methodology over the
traditional methods are:

• Faster time to market
• Quick return on investment
• Shorter release cycles
• Better adaptability and responsiveness to business changing requirements
• Early detection of failure and immediate correction

 There are several agile development methods such as Scrum, extreme programming,
test-driven development, and lean software development [4]. With agile models,
business houses expect that services and solutions are being delivered incrementally
earlier rather than later, and delivery cycle time period comes down sharply. That
is, one delivery cycle takes up from 2 to 4 weeks. However, in the midst of these
turnarounds, there arise a number of critical challenges, as mentioned below:

• High effort and cost involved in setting up infrastructures
• Lack of skilled resources
• Lack of ability to build applications from multiple places across the globe

 There are a few popular cloud platforms available in order to enable software
development in cloud environments. Google App Engine , salesforce.com, cloud-
foundry.org, cloudbees.com, corenttech.com, heroku.com, windowsazure.com, etc.,
are the leading platforms for cloud-based application development, scaling, and
sustainability.

 Collabnet (http://www.collab.net/), a product fi rm for enabling software devel-
opment in cloud-based platforms, expounds and enlightens on the seamless conver-
gence of the agile programming models, application lifecycle management (ALM)
product, and clouds for a precise and decisive answer for the perpetual software
engineering challenges, changes, and concerns. It convincingly argues that cloud
technologies reduce development barriers by providing benefi ts in the following
critical areas:

• Availability – Code is centralized and infrastructure is scalable and available on
demand.

• Access – Ensures fl exible access to test environments and transparency to project
data for the entire team.

• Overhead – Reduced support overhead, no upgrade latency – teams use an on-
demand model to get what they need, quickly and easily.

 Agile processes set the strong and stimulating foundation for distributed teams to
work closely together with all the right and relevant stakeholders to better anticipate
and respond to user expectations. Agile teams today are empowered to clearly
communicate with users to act and react expediently to their feedback. That is, they
are able to collaboratively and cleverly iterate toward the desired state and user
satisfaction. Cloud intrinsically facilitates open collaboration across geographies

P. Raj et al.

http://www.collab.net/

35

and time zones with little investment or risk. With more and more development and
test activities moving toward clouds, organizations are able to save time and money
using virtual and shared resources on need basis. Developers could save time
by leaving confi guration, upgrades, and maintenance to cloud providers, who usually
employ highly educated and experienced people. Anytime anywhere access is facil-
itated for those with proper authentication and authorization, and assets are
completely centralized and controlled.

 Agile and cloud are being positioned together and prescribed as a powerful and
pathbreaking combination for the software-development community. This might
seem counterintuitive to those entrenched in waterfall processes or those comfort-
able with the idea of a daily stand-up and colocated teams. The reality is altogether
different. That is, there are a number of technical and business cases emerging for
using the agile methods in the cloud. The agility concepts make development
teams responsive to the changing needs of businesses and empower them to be
adaptable and fl exible. Further on, proven agile processes help to break down all
sorts of barriers and blockages between development and production, allowing
teams to work together to concentrate on meeting stakeholder expectations. The
synchronization of agile and cloud paradigms fully free up developers from all
kinds of diffi culties to achieve more with less, to innovate fast, and to ultimately
bring value to the business.

2.6 Convergence of Service and Cloud Paradigms

 The service idea has matured and stabilized as the dominant approach for designing,
developing, and delivering open, sustainable, and interoperable service-oriented
systems for enterprise, Web, embedded, and cloud spaces. Even many of the modules
of packaged business software solutions are modifi ed and presented as services.
Services are publicly discoverable and accessible, reusable, and composable
modules for building distinct and specifi c applications through confi guration and
customization, runtime matching, selection and usage of distributed, disparate
and decentralized services, replacement of existing service components through the
substitution of new advanced service components, and service orchestration.
Services as process elements are supporting and sustaining process-oriented systems,
which are generally more fl exible. That is, operation and controlling of software
solutions at process level considerably reduce the software development , management,
and maintenance tasks.

 Thus, the process propensity of the service paradigm and cloud-centric service-
oriented infrastructures and platforms bring a number of distinct advantages for
software engineering. Services and cloud computing have garnered much attention
from both industry and academia because they enable the rapid and radical devel-
opment of enterprise-scale, mission-critical, high-performance, dynamic, and dis-
tributed applications. Agility, adaptivity, and affordability, the prime characteristics
of next-generation software systems, can be realized with the smart leverage of

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

36

processes, services, and cloud platforms. Precisely speaking, the service paradigm
is to energize futuristic software design, whereas cloud platforms are being tipped
and touted as the next-generation service-centric platforms for service development,
deployment, management, and delivery.

 Service-Oriented Software Development – It is to see a lot of delectable and
decisive shifts with the adoption of cloud platforms. The smooth and seamless
convergence of services and clouds promises shining days for software-development
community. Of course, there are a few challenges that need utmost attention from
scholars, scientists, and students. Security, visibility, controllability, performance,
availability, usability, etc., need to be obviated in order to fast-track service-based
software implementation in clouds.

 As widely pronounced, services are being positioned as the most fl exible and
fertile component for software production. That is, software solutions are made of
interoperable services. It is all about the dynamic discovery and purposeful interac-
tions among a variety of services that are local or remote, business or IT-centric, and
owned or subscribed from third-party service providers. Services are standards-
compliant, self-describing, and autonomous entities in order to decimate all kinds
of dependencies and incompatibilities, to promote seamless and spontaneous
collaborations, and to share each of their capability and competency with others
over networks. Process and workfl ow-based service compositions result in dynamic
applications that are highly portable. XML is the key data representation, exchange,
and persistence mechanism facilitating service interoperability. Policies are being
framed and encouraged in order to achieve automated service fi nding, binding, usage,
monitoring, and governance. The essence of service governance is to explicitly
establish pragmatic policies and enforce them stringently. With a consistent rise in
automation, there is a possibility for deviation and distraction, and hence the service
governance discipline is gaining a lot of ground these days.

 As there is a clear distinction between service users and providers, service-level
agreement (SLA) and even operation-level agreement (OLA) are becoming vital for
service-centric business success and survival. Furthermore, there are geographically
distributed several providers providing identical or similar services and hence SLA,
which unambiguously describes runtime requirements that govern a service’s
interactions with different users, has come as a deciding factor for service selection
and utilization. A service contract describes its interface and the associated con-
tractual obligations. Using standard protocols and respective interfaces, application
developers can dynamically search, discover, compose, test, verify, and execute
services in their applications at runtime. In a nutshell, SOA-based application devel-
opment is through service registration, discovery, assessment, and composition,
which primarily involves three stakeholders:

• A service provider is one who develops and hosts the service in cloud platforms.
• A service consumer is a person or program that fi nds and uses a service to build

an application.
• A service broker mediates between service providers and consumers. It is a

program or professional in helping out providers publishing their unique services
and guiding consumers to identify ideal services.

P. Raj et al.

37

 The service science is on the growth trajectory. There are service-oriented
platforms, patterns, procedures, practices, products, and packages. Service manage-
ment has become a niche area of study and research. The knowledge-driven service
era is to dawn with the availability of competent service-centric technologies,
infrastructures and processes, toolsets, architectures, and frameworks. Service
engineering is picking up fast with the suffi cient tweaking and tuning of software
engineering principles, techniques, and tips. Everything related to IT is being con-
scientiously manipulated and presented as a service for the outside world setting the
context and case for IT as a service (ITaaS). In other words, any service can connect
and cooperate with other services individually or collectively to make bigger and
better things for the total humanity.

 The Synchronization Between Service and Cloud Ideas – As explained and
elucidated above, the service and cloud computing models together signal a sunny
and shining days ahead for software building. A combined framework comprising
the service and the cloud concepts goes a long way in halving the application devel-
opment drudgery. Cloud-centric application development gets a consolidated, cen-
tralized, virtualized, and shared IT infrastructure for effi ciently constructing and
preserving applications. Multitenancy, auto-provisioning, and elasticity features are
the strong business and technical cases for embracing the cloud idea.

 Now with the concepts of the Inter-cloud that are fast emerging and evolving,
cloud integration and federation aspects are bound to grow signifi cantly. That is,
connected and federated clouds will become the common, casual, and cheap thing
for next-generation enterprise IT. The federation of multiple types of clouds (mobile,
device, sensor, knowledge, information cloud, high-performance cloud, etc.) is to
enable distributed, global, and collaborative software development [5]. The open
and industry-strength interoperability standards of SOA empower service- sponsored
cloud integration and, on the other hand, cloud-hosted service integration. In short,
the cloud grid is not an option but a necessity considering the growing complexity
of IT toward sustaining the business dynamism.

 The concept of designing and developing applications using SOA and delivery
through cloud is to explode. Cloud brokerage fi rms could maintain cloud-hosted
service registry and repository that works out as a single point of contact for global
application developers. The service metadata offers the exact location, interface,
and contract of services being probed for use. Service developers could host their
services in service platforms of worldwide cloud providers, and this enables appli-
cation developers to search and choose right and relevant services based on the
business requirements. Service providers could also host integrated development
environments and rapid application development tools, code generators and car-
tridges, debuggers, simulators, emulators, etc., in their own clouds or in third-party
cloud infrastructures. Furthermore, they could publish software artifacts such as
modifi able and extendible business processes, workfl ows, application templates,
user interfaces, data schema, and policies to facilitate software development and
generation. Developers can fi nd viable and value-added services from multiple ser-
vice providers and leverage these artifacts in order to come out with service- oriented

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

38

applications. The fast-maturing federation science is to dictate the future of software
engineering. In short, there are cloud-based components such as:

• Application development artifacts such as templates, processes, and workfl ows
• Service development environments and tools
• Service registry repository
• SCA-compliant application implementation platforms with service discovery,

integration, and orchestration features and facilities leveraging the application
artifacts

• Application delivery as a service via the Internet as the cheap and open commu-
nication infrastructure

 Service-Based Software Design and Development – Development of service
systems remains a quiet big challenge because services are being developed by
different entities and deposited in geographically distributed locations. For an appli-
cation to fructify, diverse services need to be smartly collected and consolidated.
Different services are covered up with disparate policies. Varying capabilities decorate
services. Also application development process is increasingly diversifi ed because
application developers, service brokers, and application service providers are dis-
tributed. The coordination here is very important for the SOA-based IT and business
successes. Standardized protocols, messaging mechanisms, and interfaces are very
essential services to be linked remotely and resiliently.

 Software engineering revolves around two main activities: decomposition and
composition. As business problem evolves and enlarges, the act of decomposition
of business problem is required as our mental capability is limited. Once an appro-
priate solution for the business problem is designed, then identify those solution
building blocks and compose them to develop the solution.

 Similar to other development methodologies, service-oriented software develop-
ment starts with requirements extraction, elucidation, and engineering. During this
phase, the application developer develops a business model; works with the customer
to articulate, analyze, authenticate, and refi ne requirements; designs a workfl ow for
the business model; and fi nally decomposes the requirements into smaller and
manageable modules. Then the application developer sends each of the disinte-
grated and disengaged requirements to a service brokerage to fi nd suitable services
that satisfy the enshrined requirements. Once the right services are identifi ed for
each of the requirement parts, the application developer simply composes them into
an application. Service component architecture (SCA) is a recent architectural style
enabling application componentization into service modules that in turn get assem-
bled to form a single entity. There are SCA-compliant IDEs from different product
vendors. In some cases, correct services might not be available and hence one has to
develop those services from the scratch.

 Cloud-Based Software Delivery – Software engineering encompasses not only
the software-developmen t processes but also the effective delivery of the developed
software to users, which includes software deployment and maintenance. However,
SOA does not prescribe any specifi c methods for software deployment, manage-
ment, governance, and enhancement. These can be decided and activated by software
service organizations differently. Clouds as the standardized and smart infrastructure

P. Raj et al.

39

come to the rescue here by ensuring effective application delivery. Applications can
be affordably deployed and maintained in advanced cloud platforms. Application
capabilities can be provided as a service. All kinds of non- functional (quality of
service (QoS)) attributes are effortlessly accomplished with clouds. Anytime any-
where resource access is being facilitated. Centralized monitoring and management
are remarkably simplifi ed here. That is, clouds as the next- generation service-
oriented infrastructures (SOIs) have emerged in correct time in order to take the
service idea to greater heights. It is therefore no exaggeration to proclaim that
the software engineering fi eld is greatly and grandiosely empowered by evolving
cloud concepts.

 Agile Service Networks (ASNs) [6 , 7] – Cloud computing’ s high fl exibility needs
novel software engineering approaches and technologies to deliver agile, fl exible,
scalable, yet secure software solutions with full technical and business gains. One
way is to allow applications to do the computing in cloud, and the other is to allow
users to integrate with the applications. Agile service networks (ASNs) are themselves
an emerging paradigm envisioning collaborative and dynamic service interactions
(network edges) among global service-oriented applications (network nodes). ASNs
can be used as a paradigm for software engineering in the cloud, since they are
indeed able to deliver solutions which are both compliant to the cloud’s needs and
able to harness it, bringing about its full potential.

 Context adaptation is used in ASNs to achieve agility. The concept of ASN is
defi ned as a consequence of “late service binding.” In the context of services’ dyna-
mism, which is achieved through late service binding, ASNs become a perfect
example of how agility can be achieved in SOA systems. Adaptation is presented as
one of the main tenets of SOA. This paradigm regards highly dynamic systems
within a rapidly changing context to which applications must adapt. In this sense,
ASNs are used to exemplify industrial needs for adaptive, context-aware systems.

 ASN Key Features – ASNs are dynamic entities. Dynamism is seen as an essential
part of the service interactions within collaborative industries (i.e., industrial value
networks). Dynamism in ASNs is the trigger to service rearrangement and applica-
tion adaptation. For example, an ASN made of collaborative resource brokering
such as distributed stock markets is dynamic in the sense that different partners may
participate actively, others may be dynamically added while brokering is ongoing,
others may retire from the brokering process, and others may dynamically change
their business goals and hence their brokering strategy. ASNs are business- oriented:
ASNs are borne out of business corporative collaborations and represent complex
service applications interacting in a networked business scenario involving multiple
corporations or partners in different sites (i.e., different geo-locations). Within
ASNs, business value can be computed, analyzed, and maximized.

 Cloud-Induced Software Engineering Challenges – As widely reported, there
are some important concerns with public clouds. Security, controllability, visibility,
performance, and availability are the major issues. Virtualization, the central
technology for the massive uptake and incontestable success of the cloud idea, has
introduced new security holes. Typically, public clouds are more or less accom-
modating several customers to be economical, and there are real dangers and risks
in a shared environment. If a cloud is not available for a few minutes, the resulting

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

40

loss would be very enormous necessitating the sharp increment in guaranteeing
cloud availability. Cloud reliability is another central and crucial factor not to be
sidestepped easily. The security of data in rest or in transit has to be infallibly
secure, and cryptography is the major source of inspiration for data security in a
cloud environment. Identity and access management solutions are being conceived
and concretized for the more open and risky cloud systems. Besides, application
and service security and network and physical security aspects are also critical in a
cloud environment.

 Smartphone applications are becoming very popular and very large in the number
with the massive production and release of slim and sleek, handy and trendy, yet
multifaceted mobile phones. As there are literally more mobile devices compared to
desktop and other powerful compute machines, application development for the
fastest-growing mobile space is gaining unprecedented importance. Mobile
technologies, application architectures and frameworks, toolsets, service delivery
platforms, hypervisors for mobile devices, unifi ed and integrated application devel-
opment environments, etc., are being produced in plenty by competing parties in
order to score over others in the mind and market shares. There are specifi c cloud
infrastructures for securely storing a variety of mobile data, content, mails, services,
and applications. Besides cell phones and smartphones, other mobile and portable
devices incessantly capturing the imagination of people are the powerful tablets.
Thus, there are several dimensions and directions in which the nifty and niche
content and application development activities for the mobile landscape are
proceeding.

 With cloud emerging as the centralized place for mobile services, the days of
anywhere anytime information and service access and upkeep are bright. Especially
form builder applications for smartphones are being made available so that users
could creatively produce their own forms in order to indulge in commercial and
fi nancial activities on the move. Hundreds of thousands of smartphone applications
are being built, hosted, and subscribed by various smartphone vendors. Games are
the other prominent and dominant entities for the mobile world. Precisely speaking,
mobiles and clouds are increasingly coming closer for context-aware, customer-
centric, and cognitive applications.

 In summary, the penetration of cloud idea is simply mesmerizing and momen-
tous. The cloud-based platforms are being positioned as the dynamic, converged,
and fi t-for-purpose ones for application engineering not only for enterprise IT
but also for embedded IT, which incidentally includes mobile, wearable, porta-
ble, fi xed, nomadic, wireless, implantable, and invisible devices. Extremely and
deeply connected applications and services are bound to rule the IT in the com-
ing days, and the cloud paradigm is the defi nite and decisive contributor for the
future IT.

 Although, the service and cloud concepts have greater affi nity in strengthen-
ing software development and delivery, there are some serious issues to be
addressed urgently in order to eliminate all kinds of doubts of in the minds of
enterprise executives in order to reach into the promised land of cloud-sponsored
service era.

P. Raj et al.

41

2.7 Amalgamation of Model-Driven Architecture
and the Cloud Paradigms

 Modeling has been a fundamental and foundational activity for ages. Before a
complex system gets formed, a model of the system is created as it could throw
some light about the system’s fi nal structure and behavior. Models could extract
and expose any kind of hidden risks and lacunae in system functioning and give a
bit of confi dence for designers and developers to plan and proceed obviating all
kinds of barriers. Models give an overall understanding about the system to be
built. In short, models decompose the system into a collection of smaller and man-
ageable chunks in order to empower engineers to have a fi rm grip and grasp of the
system under implementation. Modeling is one of the prominent and dominant
complexity- mitigation techniques as systems across domains are fast-growing in
complexity.

 As IT systems are growing complexity, formal models are presented as the next-
generation abstraction and encapsulation unit for them. In the recent past, models
have been used as building blocks for having portable, sustainable, and fl exible IT
systems. Models are created digitally, stored, refi ned, and revitalized as per the
changing needs. There are formats such as XML Metadata Interchange (XMI) for
exporting models over the network or any other media to other systems as inputs for
further processing. There are unifi ed and visual languages and standardized notations
emerging and energizing compact and formal model representation, persistence,
manipulation, and exchange. Product vendors and open source software developers
have come out with innumerable software tools for facilitating model creation, trans-
formation, verifi cation, validation, and exporting. For object orientation, unifi ed
modeling language (UML) has been the standard one for defi ning and describing
models for various constructs and activities. For component-based assembly and ser-
vice-orientation programming, UML profi les have been created in order to keep UML
as the modeling language for software engineering. Further on, there are processing
modeling and execution languages such as BPML and BPEL and notations such as
BPMN in order to develop process-centric applications. That is, process models act as
the building blocks for system engineering.

 Model-driven architecture (MDA) is the associated application architecture.
Model-driven software engineering (MDSE) is being presented as the most dynamic
and drastic method for application engineering. Emerging and evolving MDSE
techniques can automate the development of new cloud applications program-
matically. Typically, cloud applications are a seamless union of several unique
services running on different IT platforms. That is, for producing competent cloud
applications, all the right and relevant services from diverse and geographically
distributed servers have to be meticulously found, bound, and linked up in order to
build and sustain modular (loosely coupled and highly cohesive) cloud applications.
Precisely speaking, services have been overwhelmingly accepted as the most
productive and pliable building block for realizing adaptive, mission-critical, and
enterprise-scale applications.

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

42

 For building service-oriented cloud applications, there is a need for modernizing
all the legacy software modules into services. Model-driven reverse engineering
techniques are capable of discovering and generating standardized models out of
legacy software modules. The overall idea is to use such techniques and enabling
frameworks such as MoDisco framework to speed up the task of model creation
from legacy modules. These formal models can be subjected to further transfor-
mation to derive corresponding services that in collaborate with other cloud-
based services in order to craft fresh cloud applications quickly. That is, just
as software as a service (SaaS) paradigm, the notion of modeling as a service
(MaaS) is to see brighter days ahead especially in assisting the formation of
cloud applications out of existing non-cloud applications. As there are billions of
legacy code still contributing extensively for fortune corporations across the
globe, MaaS is to grow exponentially. There will be processes to be defi ned,
frameworks to be produced, cloud platforms to be immensely utilized, etc.
Reverse engineering of application modules into a PIM and then into one or more
PSMs to automate the service realization out of old software components is the
cleverest and clear-cut approach for the forthcoming cloud era. It is keenly antic-
ipated that similar to SaaS, MaaS will become a pioneering initiative. Here are
some possible applications of MaaS [8]:

• Creation of collaborative and distributed modeling tools to allow the specifi cation
and sharing of software models among team members in real time.

• Defi nition of modeling mash-ups as a combination of MDSE services from
different vendors.

• Availability of model transformation engines in the cloud to provide platform-
independent model management services.

• Improving Scalability of MDSE – Models of real-life applications (especially
those obtained by reverse engineering of running systems) are usually very large.
Modeling services in the cloud would ensure the scalability of MDSE techniques
in those scenarios.

• Facilitating Model Execution and Evolution – Moving code-generation and
simulation services to cloud would facilitate the deployment and evolution of
software applications (regardless of whether those applications were implemented
as SaaS) and substantially reduce the time to market. The cloud service providers
(CSPs) with their infrastructure administration experts could set up the relevant
infrastructures to compile and deploy the applications quickly.

• Solving Tool Interoperability Problems – Exchanging data (and metadata) among
MDSE tools is one of the major challenges nowadays. So far, the problem is
being addressed by defi ning bridges among the tools, but MaaS is to offer a more
transparent and global solution to this problem. For instance, bridges could be
defi ned as services and executed on demand automatically by other services
when incompatibility issues surface.

• Distributed Global Model Management – Complex MDSE projects involve
several models (possibly conforming to different metamodels), model transfor-
mations, model injectors and projectors, etc. The MaaS paradigm is to facilitate
the manipulation of all these modeling artifacts in a distributed environment.

P. Raj et al.

43

 Model-Driven and Cloud-Sponsored Legacy Enablement Toward Mainstream
Computing – Long-living software systems [9] constantly undergo a number of
changes during their lifetime. These are triggered by a changing system context
(system usage and technology stacks) and/or changing system requirements. The
changes include functional and/or non-functional attributes, for example, the capability
and capacity of the system to deal with increasing system workload. The latter is
often a direct consequence of providing the access to existing systems over the
Internet, for example, for the integration of the systems into novel service compositions.

 Cloud computing brings a new ray of hope of addressing this issue very deftly by
providing almost unlimited amount of compute or storage resources. In order to
utilize this new offer, long-living software systems have to be migrated to cloud. Often
this implies major changes (invasive) to the system structure for which no systematic
engineering process is available today. This vacuum can lead to high risks or even
project failures. There has to be a bridge between the conventional and classic com-
puting and the cloud computing architectures. That is, the age-old architectural styles
and patterns such as three-tier client/server architecture do help in building business
applications. With cloud’s emergence, new-generation architectural styles emerge
for the effi cient use of the almost unlimited computational resources in the cloud.
There is a new architectural style (the so-called SPOSAD style: Shared, Polymorphic,
Scalable Application and Data) allowing massive replication of the business logic,
which is enabled by a smart physical data distribution. This evolution in different
directions and dimensions has to be bridged through a systematic engineering
support for facilitating the movement from the old to new architecture. The authors
have focused on supporting performance and scalability predictions.

 They have proposed a formal process. First, existing systems have to be reverse-
engineered to obtain a performance prediction model. These models contain both static
as well as dynamic aspects such as contributing components and their interactions.
Second, the software architect has to select a set of potential target architecture styles
or patterns, which have to be appropriately formalized. For example, the architect plans
to evaluate the impact of the classical system architecture movement to MapReduce or
to the SPOSAD style, and, thus, he/she automatically adapts the reverse-engineered
performance prediction models by the selected architectural styles.

 Third, the performance of the target architectures is evaluated to get a fi nal ranking
and to come to a recommendation for the migration. Finally, based on the analyzed
target architecture, the system’s implementation has to be adapted. The major
foundations for the sketched process are already in place (software architectural
patterns, software performance engineering, architecture evolution, and model
transformations).

2.8 Mechanisms for Assisting Cloud Software Development

 Today, not only development processes but also environments have to be very
agile [10] and anticipative as software development becomes more sophisticated.
Cloud- induced agile IT environments are being presented as the viable and valuable

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

44

resources for new-generation software construction. The unique capabilities of
clouds are being succinctly indicated below:

• On-demand provisioning and de-provisioning of resources in minutes through a
self-service access.

• Non-function requirements of servers, storages, and network products are being
ensured.

• Implicit support for virtual development environments and multi-tier application
architectures.

• Easier migration of the existing virtual-server images and workloads into the cloud.

 Clouds can accelerate the development cycle by creating multiple development
environments that enable several software activities to be carried out simultane-
ously. Testing can be accomplished along with development. The unique on-demand
resource provisioning capability of clouds makes this parallelization possible.
Cloud supports different levels of quality of service (QoS). Developers could choose
the appropriate QoS level as per the applications. This means that a higher level
of performance, security, and availability needs to be assigned to a development
environment for performance and scalability testing. In exchange, the hourly cost of
such environment goes up. The QA process will also benefi t from on-demand up
and down scaling of cloud resources, as this fi nally solves the problem of testing
performance and scalability of applications at a large scale, but without indefi nitely
reserving and paying for resources when they are unused.

 Cloud virtual machines (VMs) support multi-tier application development and
testing. That is, presentation tier, business logic tier, and data tier are being deployed
in different VMs. When the development in a virtual cloud environment is fi nished,
the images of virtual servers can be easily transferred to the production environment.

 The advantage is to avoid problems related to confi guring a new application for
transfer from the development to the production environment, which again affects
the speed of the application time to market.

 The Lean Thinking Principles for Cloud Software Development – There are lean
approaches and principles being sincerely and seriously examined and expounded by
professionals and pundits for optimally implementing a variety of industrial systems.
Software engineers are also vigorously following the same line of thinking for produc-
ing high-quality software solutions for a variety of business and societal problems.
The core elements of the lean principle are “eliminate waste, build quality in, create
knowledge, defer commitment, deliver fast, respect people and optimize the whole.”
This set of well-intended tasks defi nitely creates a sound case for contemporary
cloud enterprises. As corporates are planning and assimilating cloud technologies
as a part of their business transformation initiative, there are other mandatory things
to be accomplished in parallel in order to reap the envisioned advantages.

 Here is what a few software companies have achieved by applying lean principles
to their development process [11]:

• Salesforce.com has improved time to market of major software releases by 61 %
and boosted productivity across their R&D organization by 38 % since adopting
agile development.

P. Raj et al.

45

• BT Adastral, the largest telecommunications company in the UK, completed its
fi rst major lean software project 50 % sooner than expected and incorporated
many product changes along the way. The product yielded 80 % ROI in the
fi rst year.

• PatientKeeper, specializing in software for the healthcare industry, puts out
weekly maintenance releases, monthly new feature releases, and quarterly new
application releases. This company completes 45 development cycles in the time
it takes their competitors to do 1 cycle.

• Timberline Software (now part of The Sage Group), serving the construction and
real estate market, estimates that improvements in quality, costs, and time to market
were all greater than 25 % as a result of switching to lean software development .

 Lean thinking is important for scaling agile in several ways [12]:

• Lean provides an explanation for why many of the agile practices work. For
example, Agile Modeling’s practices of lightweight, initial requirements envi-
sioning followed by iteration modeling and just-in-time (JIT) model storming
work because they refl ect deferment of commitment regarding what needs to be
built until it is actually needed, and the practices help eliminate waste because
we are only modeling what needs to be built.

• Lean offers insight into strategies for improving our software process. For exam-
ple, by understanding the source of waste in IT, we can begin to identify it and
then eliminate it.

• Lean principles provide a philosophical foundation for scaling agile approaches.
• It provides techniques for identifying waste. Value stream mapping, a technique

common within the lean community, whereby we model a process and then
identify how much time is spent on value-added work versus wait time, helps
calculate overall time effi ciency of what we are doing. Value stream maps are a
straightforward way to illuminate our IT processes, providing insight into where
signifi cant problems exist.

 The lean manufacturing with its emphasis on eliminating waste and empowering
employees shook up the automotive industry. Lean principles are revolutionizing
software development industry as well. Lean developers can build software faster,
better, and cheaper than competitors using traditional bulky and bulging methods.
By adopting agile practices and test-driven development, a software fi rm can go a
long way toward leaning out its operations and serving its customers better.

 Lean Agile Methodologies Accentuate Benefi ts of Cloud Computing [13] – Lean
and agile are two different production methodologies that are used extensively
in business. The lean approach is derived from the production processes adopted by
Toyota, Japan. It focuses on a demand-driven approach with an emphasis on:

• Building only what is needed
• Eliminating anything that does not add value
• Stopping production if something goes wrong

 The agile approach is focused on the notion that software should be developed in
small iterations with frequent releases, because neither the end-user requirements

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

46

nor the exact amount of efforts can be accurately fi nalized upfront. Even the end
users themselves cannot fully articulate what they need. Hence, the requirements
must be collaboratively discovered, analyzed, and fi nalized. Agile processes [14]
involve building software in small segments, testing those segments, and then getting
end-user feedback. The aim is to create a rapid feedback loop between the develop-
ers and the actual users.

 Lean agile development methodologies and the cloud model complement each
other very well. Cloud services take pride in meeting user requirements rapidly,
delivering applications whenever and to whatever extent they are needed. Agile
methods give high credence to user collaboration in requirements discovery.
The lean agile system of software development aims to break down project require-
ments into small and achievable segments. This approach guarantees user feedback
on every task of the project. Segments can be planned, developed, and tested
individually to maintain high-quality standards without any major bottlenecks. The
development stage of every component thus becomes a single “iteration” process.
Moreover, lean agile software methods place huge emphasis on developing a
collaborative relationship between application developers and end users. The entire
development process is transparent to the end user and feedback is sought at all
stages of development, and the needy changes are made accordingly then and there.

 Using lean agile development in conjunction with the cloud paradigm provides a
highly interactive and collaborative environment. The moment developers fi nalize
a feature, they can push it as a cloud service; users can review it instantly and
provide valuable feedback. Thus, a lengthy feedback cycle can be eliminated
thereby reducing the probability of misstated or misunderstood requirements. This
considerably curtails the time and efforts for the software development organization
while increasing end-user satisfaction. Following the lean agile approach of
demand- driven production, end users’ needs are integrated in a more cohesive and
effi cient manner with software delivery as cloud services. This approach stimulates
and sustains a good amount of innovation, requirement discovery, and validation in
cloud computing.

2.9 Cloud Platform Solutions for Software Engineering

 Compared to on-premise applications, cloud-based software as a service (SaaS)
application are delivered through the Web, billed on a subscription basis, and
service providers themselves are responsible for delivering the application at accept-
able service levels. As a consequence, the economics of delivering SaaS is different
from traditional software applications. Companies delivering SaaS/Cloud applica-
tions need to realize economies of scale and keep the application delivery costs
low. These issues have a signifi cant impact on how SaaS applications are archi-
tected, developed, and delivered. For the paradigm of SaaS to succeed, issues like
application scalability, cost of delivery, and application availability had to be
resolved comprehensively. A new set of architectural, development, and delivery
principles have emerged and strengthened the spread of the SaaS model.

P. Raj et al.

47

 In order to achieve the acceptable levels of maturity, companies need to address
issues in three core areas [15]:

• They need to build applications that support a multitenant architecture that
enables a single instance of the application to be shared among multiple customers.
Multitenancy has a signifi cant impact on all layers of the application stack and is
challenging to achieve. This architectural principle is a signifi cant contributing
factor in reducing application delivery costs.

• SaaS vendors need to address a signifi cant number of non-functional application
concerns that are essential for the success of the service. For example, traditional
software vendors were not concerned with issues like metadata management,
tenant customization and confi guration, scalability, fault tolerance to meet SLAs,
metering, monitoring, robust security in distributed environments, and a host
of other concerns.

• As applications grow and scale, companies need to address automation of
operations and application management. Automation of operations and application
management is among the primary contributing factors in reducing application
delivery costs. Despite emerging automation in areas like the infrastructure
cloud, 75–80 % of the issues arising in operations are best solved at the applica-
tion design and development level. Furthermore, it is diffi cult and expensive
to achieve operational and administrative automation once the service is designed
and developed. SaaS providers can achieve signifi cant benefi ts if application
architecture takes automation of operations into account early in the applica-
tion life cycle.

 The cloud idea is everywhere and engineers, executives, exponents, and evange-
lists are trying different ways and means of adopting and adapting the cloud con-
cepts as per their organizational needs. Data centers are being pruned and tuned
to be cloud centers, traditional applications are getting modernized and migrated to
local as well as remote cloud environments, centralized delivery and management
of IT resources are being insisted and illustrated, innovative and disruptive ideas get
quickly concretized by renting needed compute and storage servers from public
cloud providers, server systems exclusively for backup and disaster recovery to
guarantee business continuity are being subscribed out of cost-effective cloud
servers, all kinds of customer-centric applications such as collaboration software
are unhesitatingly moved to cloud systems in order to reap their distinct advantages
(technical as well as business), etc. In the recent past, cloud is being prescribed as
the most productive solution for software coding and testing. That is, platform as a
service (PaaS), which has been dormant and dumb for quite a long time, gets a fresh
life with the realization across the globe that cloud-based platforms are much more
effective, simpler, and quicker for software building.

 How Azure Helps Cloud Software Development to Be Agile? – Microsoft Azure
is an application platform on the cloud that provides a wide range of core infrastructure
services such as compute and storage along with building blocks that can be con-
sumed for developing high-quality business applications. Azure provides platform
as a service (PaaS) capabilities for assisting application development, hosting,

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

48

execution, and management within Microsoft cloud centers. Windows Azure is an
open cloud platform that enables to quickly build applications in any language,
tool, or framework. The advantages of Azure cloud are:

• Azure provides staging and production environments on the cloud which provide
resource elasticity on demand, and this agility factor helps a lot for any Windows
application development team.

• Only the development and unit testing is carried out on-premise systems.
• Cloud staging environment can be used to create different test environments on

cloud such as integration, system, and UAT.
• Application source code can be maintained in Azure cloud storage.
• Developers test their application with a production-like environment as setting

up a real production environment for testing involves more investment, planning,
time, and resources. That is, all kinds of infrastructure-intensive software testing
can be accomplished in Azure cloud with high dependability cost-effectively due
to the inherent elastic nature of Azure. This enables application providers to
ensure the SLA to their customers and consumers.

• A couple of integrated development environments such as Visual Studio.NET
are provided by Microsoft in order to simplify and speed up cloud application
development activities.

• Source code can be promoted from one environment to another rather seamlessly
without developers having to write verbose deployment scripts or instruction
manuals to set up the application in the target environments.

 How Azure Helps Software Delivery to Be Agile? – Delivery is also facilitated
by Azure cloud. By providing fl exible infrastructures just in time, cloud software
delivery is made agile. All kinds of fl uctuations of infrastructure needs are being
automatically taken care of Azure cloud. All kinds of plumping works are being
delegated to cloud center experts so that designers, developers, and testers can focus
on their core activities.

 As Visual Studio IDE is tightly integrated with the cloud environment, applica-
tion development and deployment happen faster and are hugely simplifi ed. The
cloud provides all the libraries and APIs upfront in order to lessen the developmental
cost and complexity. Further on, in the Azure cloud, deployment and upgrade
processes are completely automated to minimize or eliminate some of the lengthy
and tedious steps while planning and executing the traditionally accomplished
deployment process. Working prototypes built by geographically dispersed devel-
opers and centrally deployed in Azure can be made available and accessible
immediately to prospective customers in order to elicit and extract their feelings and
feedbacks as this arrangement sharply reduces time especially for contemplating
any major or minor corrections to take the products to market quickly.

 The Alice Platform [15] – In order to help companies with the challenges of
building and delivering successful SaaS services, the authors have developed
the fi rst open SaaS platform called Alice. As a company focused on developing
cloud- based SaaS services, it became quite evident that traditional JEE, .NET, and
Ruby on Rails platforms were not designed to address base level architectural

P. Raj et al.

49

concerns of large and scalable SaaS applications. While building applications for
our clients, developers had to address multitenancy, data management, security,
scalability, caching, and many other features. Many of the most successful SaaS
companies had themselves built their own platforms and frameworks to address
their specifi c applications and cost needs. Companies like Salesforce and NetSuite,
fi rst and foremost, built platforms to meet their application needs and lower delivery
costs, rather than building them to be sold as a platform as a service (PaaS).

 Release of SaaS application platforms by companies like Salesforce has not
made a signifi cant difference in the development and delivery of commercial
SaaS applications. Currently, many PaaS /SaaS platforms on the market are suitable
for development of only small situational applications, rather than commercial busi-
ness applications that are of interest to startups, independent software vendors
(ISVs), and enterprises. These platforms use proprietary languages, are tied to a
specifi c hardware/software infrastructures, and do not provide the right abstractions
for developers. Alice was developed to address the above concerns and provide
a robust and open platform for the rapid development of scalable cloud services
applications. Figure 2.1 illustrates the reference architecture of the Alice Platform
for SaaS application development and delivery.

 Fig. 2.1 The architectural diagram of the Alice platform

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

50

2.10 Software Engineering Challenges in Cloud Environments

 With the coherent participation of cloud service providers, the software development
complexity is to climb further [3]. In the ensuing cloud era, software develop-
ment process will start to involve heterogeneous platforms, distributed services, and
multiple enterprises geographically dispersed all over the world. Existing software
process models are simply insuffi cient unless the remote interaction with cloud
providers is a part and parcel of the whole process. Requirements gathering phase
so far included customers, end users, and software engineers. Now it has to include
cloud service providers (CSPs) as well, as they will be supplying the computing
infrastructure, software development, management, maintenance platforms, etc.
As the cloud providers are only conversant with the infrastructure utilization details,
their experts can do the capacity planning, risk management, confi guration manage-
ment, quality assurance, etc., well. Similarly, analysis and design activities should
also include CSPs, who can chip in with some decision-enabling details such as
software-development cost, schedule, resource, and time.

 Development and debugging can be done on cloud platforms. There is a huge
cost benefi t for individuals, innovators, and institutions. This will reduce the cost
and time for verifi cation and validation. Software developers should have gained
more right and relevant expertise in building software from readily available
components than writing them from the scratch. The monolithic applications have
been shunted out and modular application has the future. Revisiting and refactoring
of existing application is required to best utilize the cloud paradigm in a cost-effective
manner. In the recent past, computers are fi t with multicore processors. Another
trend is computers are interconnected as well as with the Web. Computers are
becoming communicators and vice versa. Computers are multifaceted, networked,
and shrinking in size, whereas the scope of computing is growing. Therefore,
software engineers should train themselves in parallel and distributed computing
to complement the unprecedented and inescapable advances in hardware and
networking. Software engineers should train themselves in Web protocols, XML,
service orientation, etc. Web is on the growing trajectory as it started with a simple
Web (Web 1.0). Today it is the social Web (Web 2.0) and semantic Web (Web 3.0)
attracting the attention of professionals as well as people. Tomorrow defi nitely it
will be the smart Web (Web 4.0). The cloud proposition is on the fast track and
thereby there will be a scintillating synchronization between the enlarging Web
concepts and the cloud idea.

 Cloud providers also have the appropriate infrastructure and methods in hand in
order for application maintenance [14]. There is a service-level agreement (SLA)
being established as a contract between cloud users (in this case, software engineers)
and cloud providers. Especially the advanced cloud infrastructure ensures non-
functional (scalability, availability, security, sustainability, etc.) requirements. Other
serious challenges confronting the cloud-based software development include
the following. As we see, the development of software is multilateral in a cloud envi-
ronment unlike the collocated and conventional application software development.

P. Raj et al.

51

The difference between these two radical approaches presents some of the noticeable
challenges to software engineering:

• Software Composition – Traditionally, application software engineers develop a
set of coherent and cohesive modules and assemble them to form an application,
whereas in the fast-expanding cloud landscape, fi nding and composing third-
party software components is a real challenge.

• Query-Oriented Versus API-Oriented Programming – MapReduce, streaming,
and complex event processing require developers to adopt a more functional
query-oriented style of processing to derive information. Rather than a large sur-
face area of OO APIs, these systems use an extension of SQL-like operations
where clients pass in application specifi c functions which are executed against
associated data sources. Doing complex join queries or function composition
such as MapReduce is a diffi cult proposition.

• Availability of Source Code – In the current scene, full source of the code is
available. However, in the multilateral software development , there is no source
code available because of third-party components. Therefore, the challenge for
software engineers is the complete comprehension of the system.

• Execution Model – The application software developed generally is executed
on single machine, whereas the multilateral software developed for cloud
environment is often distributed between multiple machines. Therefore, the
challenge for software engineers is the traceability of state of executing entity
and debugging.

• Application Management – The challenges are there as usual when there is an
attempt to embrace newer technologies. Application lifecycle management
(ALM) is quiet straightforward in the traditional setting, whereas globally,
collaborative and cloud-based application management is beset with defi nite
concerns and challenges.

 The need of the hour to make the cloud concepts more benefi cial to all sections
of the world is to activate the innovation culture; thereby, a stream of inventive
approaches can be unearthed to reinvigorate the sagging and struggling software
engineering domain. Here is one. Radha Guha [2] has come out with an improved
cost estimation model for the cloud-based software development .

2.11 Conclusion

 Nowadays, for most business systems, software is a key enabler of their business
processes. The software availability and stability directly impact the company’s
revenue and customer satisfaction. Software development is therefore a critical
activity. Software development is undergoing a series of key changes. A growing
number of independent software vendors (ISVs) and system integrators (SIs) trans-
form themselves into service providers delivering their customers’ and partners’
applications in the form of services hosted in the cloud.

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

52

 The cloud technology could reduce the time needed for the development of
business services and to take them to the market. Each additional month or quarter
in which the cloud services are accessible to users has a direct impact on increasing
revenues, which affects the fi nal fi nancial statements. The speed at which software
applications can be developed, tested, and brought into production is defi nitely
one of the critical success factors for many companies. Therefore, any solution
accelerating the application time to market has an immediate and measurable impact
on return on investment (ROI).

 Application developers are regularly confronted with a request to establish
special environments for developing, debugging, and compiling appropriate soft-
ware libraries for making software solutions. Typically, these environments are
established for a limited period of time. Accessing appropriately confi gured
development environments with an adequate processing power and storage space
on demand is very crucial for software engineering. To perform their tasks, the
programmers should be able to quickly confi gure servers, storage, and network
connections. Here comes the signifi cance of cloud environments for taking soft-
ware to market quickly. In this chapter, we primarily discussed the pathbreaking
contributions of cloud infrastructures for realizing sophisticated and smart services
and applications.

 References

 1. Yara, P., Ramachandran, R., Balasubramanian, G., Muthuswamy, K., Chandrasekar, D.: Global
software development with cloud platforms. In: Software Engineering Approaches for
Offshore and Outsourced Development. Lecture Notes in Business Information Processing.
 http://link.springer.com/chapter/10.1007/978-3-642-02987-5_10 . vol. 35, pp. 81–95 (2009)

 2. Guha, R.: Software engineering on semantic web and cloud computing platform. http://www.
cs.pitt.edu/~chang/231/y11/papers/cloudSE (2011). Accessed 24 Oct 2012

 3. Chhabra, B., Verma, D., Taneja, B.: Software engineering issues from the cloud application
perspective. Int. J. Inf. Technol. Knowl. Manage. 2 (2), 669–673 (2010)

 4. Kuusela, R., Huomo, T., Korkala, M.: Lean Thinking Principles for Cloud Software
Development. VTT www.vtt.fi . A Research Summary of VTT Technical Research Centre of
Finland (2010)

 5. Hashmi, S.I.: Using the cloud to facilitate global software development challenges. In: Sixth
IEEE International Conference on Global Software Engineering Workshops, 15–18 Aug 2011,
pp. 70–77. IEEE XPlore Digital Library, IEEE, Piscataway (2011)

 6. Tamburri, D.A., Lago, P.: Satisfying cloud computing requirements with agile service networks.
In: IEEE World Congress on Services, 4–9 July 2011, pp. 501–506. IEEE XPlore Digital
Library, IEEE, Los Alamitos (2011)

 7. Carroll, N., et al.: The discovery of agile service networks through the use of social network
analysis. In: International Conference on Service Sciences. IEEE Computer Society, IEEE,
Washington, DC (2010)

 8. Bruneli’ere, H., Cabot, J., Jouault, F.: Combining model-driven engineering and cloud com-
puting. http://jordicabot.com/papers/MDE4Service10.pdf (2010). Accessed 24 Oct 2012

 9. Becker, S., Tichy, M.: Towards model-driven evolution of performance critical business infor-
mation systems to cloud computing architectures. In: MMSM. http://www.cse.chalmers.
se/~tichy/2012/MMSM2012.pdf (2012). Accessed 24 Oct 2012

P. Raj et al.

http://link.springer.com/chapter/10.1007/978-3-642-02987-5_10
http://www.cs.pitt.edu/~chang/231/y11/papers/cloudSE
http://www.cs.pitt.edu/~chang/231/y11/papers/cloudSE
http://jordicabot.com/papers/MDE4Service10.pdf
http://www.cse.chalmers.se/~tichy/2012/MMSM2012.pdf
http://www.cse.chalmers.se/~tichy/2012/MMSM2012.pdf

53

 10. Dumbre, A., Senthil, S.P., Ghag, S.S.: Practicing Agile Software Development on the Windows
Azure Platform. White paper by Infosys Ltd., Bangalore. http://www.infosys.com/cloud/
resource-center/documents/practicing-agile-software-development.pdf (2011) Accessed 24
Oct 2012

 11. Lean Software Development – Cutting Fat Out of Your Diet. A White Paper by Architech solutions.
 http://www.architech.ca/wp-content/uploads/2010/07/Lean-Software-Development- Cutting-
Fat-Out-of-Your-Diet.pdf . Accessed 24 Oct 2012

 12. Tripathi, N.: Practices of lean software development. http://cswf.wikispaces.com/fi le/view/Pra
ctices+in+Lean+Software+Development.pdf (2011). Accessed 24 Oct 2012

 13. Talreja, Y.: Lean Agile methodologies accentuate benefi ts of cloud computing. http://www.
the-technology-gurus.com/yahoo_site_admin/assets/docs/LACC_white_paper_ed_
v5.320180428.pdf (2010). Accessed 24 Oct 2012

 14. Das, D., Vaidya, K.: An Agile Process Framework for Cloud Application. A White Paper
by CSC. http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.
pdf (2011). Accessed 24 Oct 2012

 15. Alice Software as a Service(SaaS) Delivery Platform. A Whitepaper by Ekartha, Inc.
 http://www.ekartha.com/resources/Alice_saas_delivery_platform.pdf . Accessed 24 Oct 2012

2 Envisioning the Cloud-Induced Transformations in the Software Engineering …

http://www.infosys.com/cloud/resource-center/documents/practicing-agile-software-development.pdf
http://www.infosys.com/cloud/resource-center/documents/practicing-agile-software-development.pdf
http://www.architech.ca/wp-content/uploads/2010/07/Lean-Software-Development-Cutting-Fat-Out-of-Your-Diet.pdf
http://www.architech.ca/wp-content/uploads/2010/07/Lean-Software-Development-Cutting-Fat-Out-of-Your-Diet.pdf
http://cswf.wikispaces.com/file/view/Practices+in+Lean+Software+Development.pdf
http://cswf.wikispaces.com/file/view/Practices+in+Lean+Software+Development.pdf
http://www.the-technology-gurus.com/yahoo_site_admin/assets/docs/LACC_white_paper_ed_v5.320180428.pdf
http://www.the-technology-gurus.com/yahoo_site_admin/assets/docs/LACC_white_paper_ed_v5.320180428.pdf
http://www.the-technology-gurus.com/yahoo_site_admin/assets/docs/LACC_white_paper_ed_v5.320180428.pdf
http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.pdf
http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.pdf
http://www.ekartha.com/resources/Alice_saas_delivery_platform.pdf

55Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_3, © Springer-Verlag London 2013

 Abstract Organisations and enterprise fi rms, from banks to social Web, are consid-
ering developing and deploying applications on the cloud due to the benefi ts offered
by them. These benefi ts include cost effectiveness, scalability and theoretically
unlimited computing resources. Many predictions by experts have indicated that
centralising the computation and storage by renting them from third-party provider
is the way to the future. However, before jumping into conclusions, engineers and
technology offi cers must assess and weigh the advantages of cloud applications
over concerns, challenges and limitations of cloud-based applications. Decisions
must also involve choosing the right service model and knowing the disadvantages
and limitations pertaining to that particular service model. Although cloud applica-
tions have benefi ts a galore, organisations and developers have raised concerns
over the security and reliability issues. The idea of handing important data over to
another company certainly has security and confi dentiality worries. The implica-
tion does not infer that cloud applications are insecure and fl awed but conveys that
they require more attention to cloud-related issues than the conventional on-premise
approaches. The objective of this chapter is to introduce the reader to the chal-
lenges of cloud application development and to present ways in which these chal-
lenges can be overcome. The chapter also discusses the issues with respect to
different service models and extends the challenges with reference to application
developer’s perspective.

 Keywords Challenges in the cloud • Vendor lock-in • Security in the cloud • SLA
• Cost limitation • Traceability issue • Transparency in the cloud

 Chapter 3
 Limitations and Challenges in Cloud-Based
Applications Development

 N. Pramod, Anil Kumar Muppalla, and K.G. Srinivasa

 N. Pramod • A.K. Muppalla • K.G. Srinivasa (*)
 High Performance Computing Laboratory, Department of Computer Science
and Engineering, M S Ramaiah Institute of Technology,
 Bangalore 560054, India
 e-mail: npramod05@gmail.com; anil.kumar.848@gmail.com; srinivasa.kg@gmail.com

56

3.1 Introduction

 The paradigm of cloud computing introduces a change in visualisation of system
and data owned by an organisation. It is no longer a group of computing devices
present at one physical location and executing a particular (and only that program,
unless mentioned otherwise) software program with all the required data and
resources present at a static physical location but instead is a system which is geo-
graphically distributed with respect to both application and data. Researchers and
engineers working in the fi eld of cloud computing defi ne it in many ways. These
defi nitions are usually based on the application’s perspective, that is, the way one is
trying to employ cloud services for a particular application. A few defi nitions of
cloud computing are as shown below:

 Cloud computing is a model for enabling convenient, on-demand network access to a
shared pool of confi gurable computing resources (e.g., networks, servers, Storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction . [1]

 A Cloud is a type of parallel and distributed system consisting of a collection of intercon-
nected and virtualized computers that are dynamically provisioned and presented as one or
more unifi ed computing resources based on service-level agreements established through
negotiation between the service provider and consumers. [2]

 The desired properties of cloud computing can be characterised as technical,
economic and user experience as in [3].

3.1.1 Characteristics of Cloud Systems

 General characteristics of cloud computing are as follows [1]:

 On-demand self-service: A consumer can unilaterally provision computing capa-
bilities, such as server time and network storage, as needed automatically without
requiring human interaction with each service provider.

 Broad network access : Capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick
client platforms (e.g. mobile phones, tablets, laptops and workstations).

 Resource pooling : The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer demand.
There is a sense of location independence in that the customer generally has no
control or knowledge over the exact location of the provided resources but may
be able to specify location at a higher level of abstraction (e.g. country, state or
data centre). Examples of resources include storage, processing, memory and
network bandwidth.

 Rapid elasticity : Capabilities can be elastically provisioned and released, in some
cases automatically, to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available for provisioning often appear
to be unlimited and can be appropriated in any quantity at any time.

N. Pramod et al.

57

 Measured service: Cloud systems automatically control and optimise resource usage
by leveraging a metering capability at some level of abstraction that is appropriate
to the type of service used (e.g. storage, processing, bandwidth and active user
accounts). Resource usage can be monitored, controlled and reported, providing
transparency for both the provider and consumer of the utilised service.

3.1.2 Cloud Service Models

 There are three generally agreed cloud service delivery models [4]:

• SaaS – software as a service: Refers to providing on-demand applications over
the Internet.

• PaaS – platform as a service: Refers to providing platform layer resources,
including operating system support and software development frameworks.

• IaaS – infrastructure as a service: Refers to on-demand provisioning of infra-
structural resources, usually in terms of VMs. A cloud owner that offers IaaS is
called an IaaS provider [5].

 Newer terminologies such as DaaS (Data as a Service) [6] have also emerged, but
their applicability and use cases still remain a key question. In case of traditional IT
deployment, all the resources are under the control of a particular organisation. This
is not true anymore in case of cloud-based development. Cloud providers of each of
the cloud service models offer control over various resources. Figure 3.1 depicts a
generic view of the accessibility and control of resources with respect to IaaS, PaaS
and SaaS service models.

3.2 Challenges

 Cloud computing infl uences an adopting organisation in a variety of ways. Cost
reduction capability in terms of savings on hardware resources, which increases
with increase in horsepower of computation and are unused most of the times but
are very much critical for crunch time usage. This fl exibility in the availability of
hardware resources implies that the application can be highly scalable and dynamic
in nature in terms of utilisation of hardware resources. Amidst all the advantages,
the following are the challenges that restrict an organisation to migrate to cloud
applications (Fig. 3.2).

3.2.1 Security and Confi dentiality

 All Web service architectures have issues relating to security. On a similar note,
cloud application can be viewed as a different Web service model that has similar
security loopholes in them. Organisations which are keen on moving the in-house

3 Limitations and Challenges in Cloud-Based Applications Development

58

Security

Control
Reliability

Public Cloud
PaaS
SaaS
IaaS

 Fig. 3.2 Technology in
charge and security engineers
of an organisation must
consider the inherent issues
before migrating to cloud

 Fig. 3.1 Consumer and vendor controls in cloud service models [24]

N. Pramod et al.

59

applications to cloud must consider the way in which the application security
behaves in a cloud environment. Well-known security issues such as data loss and
phishing pose serious threats to organisation’s data and software. In addition to
those, there are other security issues which arise due to the third-party dependency
for services pertaining to cloud application development and deployment. From
a very naive point of view, it looks daunting to put an organisation’s critical and
confi dential data and its software into a third person’s CPU and storage. The multi-
tenancy model and the pooled computing resources in cloud computing have intro-
duced new security challenges that require novel techniques to tackle with [7].

 One of the top cloud application security issues is lack of control over the comput-
ing infrastructure. An enterprise moving a legacy application to a cloud computing
environment gives up control over the networking infrastructure, including servers,
access to logs and incident response. Most applications are built to be run in the con-
text of an enterprise data centre, so the way they store and the way they transmit data
to other systems is assumed to be trusted or secure. This is no more true in case of
cloud environment. All the components that have traditionally been very trusted and
assume to be running in a safe environment now are running in an untrusted environ-
ment. Many more issues such as the Web interface, data storage and data transfer
have to be considered whilst making security assessments. The fl exibility, openness
and public availability of cloud computing infrastructures challenge many funda-
mental assumptions about application security. The lack of physical control over the
networking infrastructure might mandate the use of encryption in the communication
between servers of an application that processes sensitive data to ensure its confi den-
tiality. Risks that a company may have accepted when the application was in-house
must be reconsidered when moving to a cloud environment.

 Ex. 1

 If an application is logging sensitive data in a fi le on the on-premise server and not
encrypting it, a company might accept that risk because it owns the hardware. This
will not be a safe acceptance anymore on the cloud environment as there exists no
static fi le system where the application log will reside due to the reason that the
application is executed in different virtual machines which may be on different
physical machines depending on the scale. The logging thus takes place onto some
shared storage array and hence the need to encrypt it arises. The security threat
model takes a different dimension on the cloud, and, hence, a lot of vulnerabilities
which were low are now high and they must be fi xed.

 Ex. 2

 A company hosting an application in its own data centre might ward off a denial-
of-service attack with certain infrastructure or could take actions such as blocking
the attacking IP addresses. In case of cloud, if the provider handles the mitigation of
attacks, then the consumer or the organisation hosting application needs to re- account
for how the risk or attack can be mitigated as there is no control or visibility.

3 Limitations and Challenges in Cloud-Based Applications Development

60

3.2.1.1 Overcoming the Challenge

 It is important to understand the base security solutions provided by the service
provider, for example, fi rewalls and intrusion detection systems, which are built into
to the cloud architecture. Also, it is important to note assurances the provider is
willing to offer in the case of breaches or loss. These details will help an organisa-
tion in making security-related decisions and answering some important questions
such as ‘Are these solutions and assurances suffi cient for the data which is being put
into the cloud?’ Employing a strong user authentication scheme for cloud service
will reduce many of the security breaches and data loss. In the end, an enterprise
should ensure that the cloud workloads will have at least the same level of protec-
tion as their sensitive on-premise workloads, but for less sensitive workloads, they
should avoid paying for excessive security.

3.2.2 Control

 Introduction of third-party service provider decreases an organisation’s control over
its software and data. This holds good especially in case of SaaS where the SaaS
cloud provider may choose to run software from various clients on a single machine
and storage at a given point of time. There is no control over the decision pertaining
to the above issue. Furthermore, the actual control over the software and service is
limited to the condition mentioned in the policy and user agreement and only via
certain service provider defi ned API (and keys).

 As an example, code snippet for authentication in a Rackspace [8] cloud service
(sent as JSON) is as shown below:

 curl -i \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -d \
 '{
 "credentials": {
 "username": "my_Rackspace_username",
 "key": "12005700-0300-0010-1000-654000008923"}
 }' \
 https://auth.api.rackspacecloud.com/v1.1/auth

 where:

 username – is the assigned username for which the authentication request is being sent
 key – the API key provided to access the cloud service

N. Pramod et al.

https://auth.api.rackspacecloud.com/v1.1/auth

61

 If, for instance, the consumer wishes to introduce another layer of authentication,
then the cloud provider does not allow for this facility as the API is not designed to
provide such facility. This can be extended not only to authentication but to the
entire APIs used for various purposes during cloud application development. This
hinders access and limits any tweaking which can enable the application function
better or help the organisation in curbing cost [9]. Also, as a security concern, the
ability to limit access to certain confi dential data will eventually go in vain as the
data is still available in some form or the other at the service provider and poses a
serious threat to confi dentiality.

3.2.2.1 Overcoming the Challenge

 Agreements and standardisation is one way to overcome the problem of control in a
cloud environment. Also, the paradigm of cloud does not make it feasible for a pro-
vider to give access control beyond a certain limit.

3.2.3 Reliability

 For the cloud, reliability is broadly a function of the reliability of three individual
components:

• The hardware and software facilities offered by providers: The hardware (appli-
cable to SaaS, PaaS, IaaS models) and software (applicable to SaaS, PaaS mod-
els) provided by the service provider, though not completely in the consumer’s
control, are a major reliability factor as low-performing and low-quality setup
could lead to failure. This also is decisive about the availability of the applica-
tion. The less hardware failure and faster recovery from failure will ensure that
the cloud application is more reliable.

• The provider’s personnel and the consumer’s personnel: The personnel interact-
ing with the cloud service and the application may also cause reliability issues.
For example, if an employee is accessing resources for purposes other than the
assigned, then during crunch time it could lead to failure. Also , if the mainte-
nance of the systems is not undertaken regularly or is ignored, then this could
cause failure.

• Connectivity to subscribed services: Network resources connecting the cloud
service provider and the organisation are also accountable for the reliability of
the system.

 Many suggestions on how to adopt trust models have been proposed, and one of
such can be found tabulated in Table 3.1 : “Summary of cloud service providers, prop-
erties, resource access and key challenges over different cloud service models” [10].

3 Limitations and Challenges in Cloud-Based Applications Development

62

 Table 3.1 Summary of cloud service providers, properties, resource access and key challenges
over different cloud service models

 Providers Properties Access to resources Key challenges

 SaaS NetSuite –
enterprise
resource
planning
(ERP) SaaS

 Web interface SaaS consumers have only
access to the software
which is provided as a
service. No control
over tuning the
software, operating
system and hardware
resources

 Credential
management
on cloud

 Taleo – human
resource SaaS

 No installation
required

 Usage and
accountability

 SalesForce –
customer
relationship
management
SaaS (CRM)

 Shared software,
i.e. used by
many
organisation

 Traceability of data

 Google – Google
Docs, online
offi ce suite

 Ownership is
only on data

 Data security

 Microsoft – Offi ce
Live, Dynamics
Live CRM

 Pay as you use Protection of API
keys

 PaaS Google App Engine Platform for
developing
scalable
applications

 PaaS consumers have
access to the
application develop-
ment environment, e.g.
the operating system.
Tools and libraries can
be used to build
application over the
given platform. No
control over hardware
resources and control
over choice of
platform, i.e. the
choice of tuning and
changing the operating
system

 Privacy control

 Microsoft
Windows Azure

 Test, deploy, host
and maintain
in the same
environment

 Traceability of both
application
and data

 Force.com Easy integration
with Web
services and
databases

 Maintenance
of audit trail

 AT&T Synaptic Protecting API keys
 Application

Security

 IaaS Amazon EC2 Virtual machines
are offered to
consumers

 IaaS consumers have
access to the virtual
machine instance
which can be
confi gured in a way to
suit the operating
system instance or
image and application
running over it. No
control over the
hardware resources,
i.e. the physical
resources such as the
choice of processor on
each machine, size and
capacity of memory on
each machine

 Governance

 IBM Freedom of
choice on
operating
system

 Data encryption,
especially in case
of storage service

 HP API Key Protection
 Rackspace
 Eucalyptus
 Cisco
 Joyent

N. Pramod et al.

63

3.2.3.1 Overcoming the Challenge

 In cloud, the control of physical resources is under the cloud provider, and, hence,
the responsibility for workload management, uptime and persistence also falls on
him. Therefore, it is important to understand provider’s infrastructure, architecture
and the policies and processes governing them. The assurances of uptime and avail-
ability properties must be considered whilst choosing a provider. Also, the compen-
sation and backup measure which will be in place in case of failure of any kind must
be part of the agreement, thus taking into account the reliability factors.

3.2.4 Transparency

 As discussed earlier, security issues due to third-party involvement give rise to
another subsidiary issue of trust and transparency. The problem of transparency
relates to the accountability of data usage, traceability of fi les and services on the
cloud, maintenance of audit trail, etc. on both the cloud provider and the cloud con-
sumer ends. According to Cloud Security Alliance (CSA), secrecy is not the only
way to build effective security measure. Their emphasis is on adopting and adhering
best practices and standards that create a more transparent and secure environment.
CSA is trying to get across to the purveyors of cloud services with STAR [11],
which is open to all cloud providers, and allows them to submit self-assessment
reports that document compliance to CSA published best practices. The searchable
registry will allow potential cloud customers to review the security practices of
providers, accelerating their due diligence and leading to higher quality procure-
ment experiences. CSA STAR represents a major leap forward in industry transpar-
ency, encouraging providers to make security capabilities a market differentiator.

 The software used to monitor the audit trail and to track the fi les on cloud must
be capable of tracking all the activities irrespective of the type of architecture, that
is, multi-tenant or single tenant . This software can be used by both the consumer
and the provider and tally the same as a test for common audit trail. Transparency in
case of multi-tenant SaaS provider becomes a challenging task as the application
data is present in multiple machines along with other application (which may or
may not contain vulnerability).

 The transparency issue arises mainly due to the paradigm change in cloud. It is a
shift from a focus on systems to a focus on data. Due to the inability of the current
logging and other mechanism to cope with the tracing issues, researchers explored
newer methods which worked accordingly on a cloud set up. The existing logging
mechanisms were mainly system-centric and built for debugging or monitoring
system health. They were not built for tracing data created within and across
machines. Furthermore, current logging mechanisms only monitor the virtual
machines layer, without paying attention to the physical machines hosting them.
Additionally, whilst fi le-intrusion detection and prevention tools such as TripWire
[12 , 13] existed, they merely compared key signature changes and did not record

3 Limitations and Challenges in Cloud-Based Applications Development

64

and track the history and evolution of data in the cloud. Research personnel at HP
are working on TrustCloud [14], a project launched to increase trust in cloud com-
puting via detective, fi le-centric approaches that increase data traceability, account-
ability and transparency in the cloud. With accurate audit trail and a transparent
view of data fl ow and history on cloud, the cloud services are bound to become
more reliable and the consumer has fairly more control over things which over-
comes a lot of potential challenges that hinders growth and migration towards cloud.

3.2.4.1 Overcoming the Challenge

 Trust and following the best practices are one way to overcome this challenge. Trust
is developed over time by the provider by maintaining a clean track record in terms
of the characteristics of a particular cloud service. An organisation must look for the
following aspects before choosing a service provider:

• The history of the service provider
• The operational aspects apart from the ones mentioned in the service brochure,

for example, ‘Where are the data centres located?’ ‘Is the hardware maintenance
outsourced?’

• Additional tools, services and freedom offered to improve visibility and trace-
ability in the cloud environment

 For example, users of IBM’s cloud services can use Tivoli management system
to manage their cloud and data centre services. TrustCloud can be another example
of a tool which can be used to increase transparency.

3.2.5 Latency

 In a stand-alone system, it matters a lot where the data and other resources are situ-
ated for computation. In conventional client server architecture, the application
server is made to be located as close to the client as possible via the means of data
centres and CDNs (content delivery network). On a similar note it matters a lot
where the cloud is situated and that a cloud provider may have plenty of Web band-
width from a given data centre, but if that data centre is thousands of miles away,
then developers will need to accommodate and program for signifi cant latency.
Latency is generally measured as the round-trip time it takes for a packet to reach a
given destination and come back, usually measured using the standard Linux pro-
gram, “ping”. As an example, if the cloud application is an email server, it is better
to have the cloud situated nearby. The multimedia content present in the application
can be handled by the services provided by CDNs which invisibly brings this con-
tent closer to the client.

 Irrespective of the type of cloud service deployed, all cloud computing initiatives
have one thing in common, that is, data is centralised, whilst users are distributed.

N. Pramod et al.

65

This means that if deployment is not planned carefully, there can be signifi cant
issues due to the increased latency between the end users and their application servers.
All cloud services inherently use shared WANs, making packet delivery – specifi -
cally dropped or out of order IP packets during peak congestion – a constant prob-
lem in these environments. This results in packet retransmissions which, particularly
when compounded by increased latency, lower effective throughput and perceived
application performance.

 Fortunately, in parallel with the cloud trend, WAN optimisation technology has
been evolving to overcome these challenges. WAN optimisation helps “clean up”
the cloud in real time by rebuilding lost packets and ensuring they are delivered in
the correct order, prioritising traffi c whilst guaranteeing the necessary bandwidth,
using network acceleration to mitigate latency in long-distance environments and
de-duplicating data to avoid repetition. So with WAN optimisation, it is possible to
move the vast majority of applications into the cloud without having to worry about
geographic considerations [15].

3.2.5.1 Overcoming the Challenge

 Organisations moving their latency-sensitive applications should consider negotiat-
ing with the service provider for possible support to reduce it and increase end-to-end
performance. At times, few service providers provide such facilities but mostly are
customised and confi gured for a specifi c consumer’s needs usually combining with
custom network confi gurations and private cloud . Also, care should be taken in order
to maintain the quality of normal services amidst all the tweaks to reduce latency.

3.2.6 Costing Model

 It becomes important to differentiate between the cloud provider, consumer and the
actual customer who uses the application. The consumer is a person or an organisa-
tion that has access to cloud resources (depending on the service model, agreement
and the application type). Now this organisation must analyse and consider the
trade-offs amongst the computation, communication and integration. Cloud appli-
cations can signifi cantly reduce the infrastructure cost, but it uses more network
resources (data usage, bandwidth) and hence raises the cost of data communication.
The cost per unit of computing resource used is likely to be higher as more resources
are used during the data exchange between the cloud service and the organisation.
This problem is particularly prominent if the consumer uses the hybrid cloud
deployment model where the organisation’s data is distributed amongst a number of
public/private (in-house IT infrastructure)/community clouds. Notable and com-
monly used pricing models in thirdparty systems are pay as you go and subscription
pricing. In the former, the billing is based on usage stats, and it is based on fi xed,
agreed-upon prices in the latter case.

3 Limitations and Challenges in Cloud-Based Applications Development

66

3.2.6.1 Overcoming the Challenge

 Developers and architects should analyse the cloud provider’s costing model and
make an appropriate decision of choosing the most suitable model according to the
requirements. This decision includes understanding the trade-offs which the costing
model will result into; for example, in case of an IaaS model adoption scenario,
consideration towards a hybrid infrastructure wherein the sensitive and frequently
used large data or application can be part of a private cloud and the rest could be a
thirdparty service. Every approach has pros and cons, and the decision on costing
must exploit the market options and the requirements and at the same time should
also note this pro-con trade-off. Pay as you go could be useful if the requirements
are not well defi ned and the budget is limited, and the subscription pricing is useful
when the requirements are long term and are well defi ned.

3.2.7 Charging Model

 The data usage charges in case of conventional models are fairly straightforward
and are with respect to bandwidth and online space consumption. But in case of the
cloud, the same does not hold good as the resources used is different at different
point in time due to the scalable nature of the application. Hence, due to the pool of
resources available, the cost analysis is a lot more complicated. The cost estimate is
now in terms of the number of instantiated virtual machines rather than the physical
server; that is, the instantiated VM has become the unit of cost. This resource pool
and its usage vary from service model to service model. For SaaS cloud providers,
the cost of developing scalability or multi-tenancy within their offering can be very
substantial. These include alteration or redesign and development of a software
under consideration which was initially developed for a conventional model, perfor-
mance and security enhancement for concurrent user access (similar to synchronisa-
tion and read and write problem) and dealing with complexities induced by the
above changes. On the other hand, SaaS providers need to consider the trade-off
between the provision of multi-tenancy and the cost savings yielded by multi-
tenancy such as reduced overhead through amortisation and reduced number of
on-site software licences. Therefore, the charging model must be tailored strategi-
cally for SaaS provider in order to increase profi tability and sustainability of SaaS
cloud providers [7].

3.2.7.1 Overcoming the Challenge

 A provider with better billing models and frameworks which determine usage of a
cloud service appropriately and accurately should be given preference over the rest.
For example, Rackspace has a billing model which is effi cient and at the same time

N. Pramod et al.

67

well represented and easy to understand with a well-defi ned set of information on
the cloud admin dashboard. The cloud infrastructure has become more effi cient and
mature over the years and quite a lot of measures have been taken to overcome these
problems which include better tracking softwares and billing systems.

3.2.8 Service-Level Agreement (SLA)

 Although cloud consumers do not have control over the underlying computing
resources, they do need to ensure the quality, availability, reliability and perfor-
mance of these resources when consumers have moved their core business functions
onto their entrusted cloud. In other words, it is vital for consumers to obtain guaran-
tees from providers on service delivery. Typically, these are provided through
service- level agreements (SLAs) negotiated between the providers and consumers.
The very fi rst issue is the defi nition of SLA specifi cations in such a way that has an
appropriate level of granularity, namely, the trade-offs between expressiveness and
complicatedness, so that they can cover most of the consumer expectations and is
relatively simple to be weighted, verifi ed, evaluated and enforced by the resource
allocation mechanism on the cloud. In addition, different cloud offerings (IaaS,
PaaS and SaaS) will need to defi ne different SLA meta-specifi cations. This also
raises a number of implementation problems for the cloud providers. Furthermore,
advanced SLA mechanisms need to constantly incorporate user feedback and cus-
tomisation features into the SLA evaluation framework [16].

3.2.9 Vendor Lock-In

 The issue of vendor lock-in is a rising concern due to the rapid development of cloud
technology. Currently, each cloud offering has its own way on how cloud consum-
ers/applications/users interact with the cloud. This severely hinders the develop-
ment of cloud ecosystems by forcing vendor locking, which prohibits the ability of
cloud consumers to choose from alternative vendors/offering simultaneously or
more from one vendor to another (migration) in order to optimise resources at dif-
ferent levels within an organisation. More importantly, proprietary or vendor-
specifi c cloud APIs make it very diffi cult to integrate cloud services with an
organisation’s own existing legacy systems. The primary goal of interoperability is
to realise the seamless fl uid data across clouds and between cloud and local applica-
tions. Interoperability is essential due to various reasons. Many of the IT compo-
nents of a company are routine and static applications which need to handle numbers
and for which cloud service can be adopted. These applications vary from being
storage based to computation based. An organisation would prefer two different
vendors to achieve cost effi ciency and performance enhancement via respective

3 Limitations and Challenges in Cloud-Based Applications Development

68

service. But eventually these separate applications need to interact with the core
IT assets of the company, and, hence, there must exist some common way to interact
with these various cloud applications spread over different vendors. Standardisation
appears to be a good solution to address the interoperability issue. However, as
cloud computing is still a spreading wild fi re, the interoperability problem has not
appeared on the pressing agenda of major industry cloud vendors [7].

3.2.9.1 Overcoming the Challenge

 Wise choice in choosing a vendor is the only way to overcome this issue. Currently,
there are no standards governing cloud application platforms and services and hence
is a signifi cant challenge to overcome in the coming years. However, steps have
been taken recently to manage this problem. The Federal Risk and Authorization
Management Program (FedRAMP) [17] is a government-wide program that pro-
vides a standardised approach to security assessment, authorisation and continuous
monitoring for cloud products and services. Cloud service providers are now required
to follow this standard, and hopefully it could be extended to a lot of migration and
interoperability issues.

 Amongst these generic issues, few are of serious concern than the rest and few
have not seen the broad daylight due to the infancy of cloud computing. A survey
conducted by CSA involving over 240 organisations found that security is one of the
biggest issues with 87.5 % of the people voting for it followed by performance, cost,
etc. Figure 3.3 represents the survey statistics for the same question (i.e. rate chal-
lenges/issues of the cloud/on-demand model) over various issues.

 Fig. 3.3 The result of survey conducted by CSA

N. Pramod et al.

69

3.3 Security Challenges in Cloud Application Development

 In a cloud environment, an enterprise cannot necessarily use the same tools and
services they deployed internally for security, such as a Web application fi rewall.
 For example, a company that has deployed a Web application fi rewall (WAF) as
another level of security for a legacy app when exposing it to the Web no longer
has that option as the ownership and control of infrastructure at various levels changes
in case of cloud. The CSA’s cloud application security guidance noted that IaaS
vendors have started to offer cloud application security tools and services, including
WAFs, Web application security scanning and source code analysis. The tools are
specifi c to either the provider or third party, the report noted. It will be wise to
explore all possible APIs that might provide strong logging which in turn help as
leverage for security-related activity [18].

 Having seen various issues in general, it is time now to look at security in par-
ticular with the service model point of view, that is, the issues which are inherent
and affect across various service models.

3.3.1 Challenges in Case of PaaS

3.3.1.1 Privacy Control

 This is the fi rst step in securing private data before sending it to the cloud. Cyber
laws and policies currently exist which disallow and impose relevant restrictions on
sending of private data onto third-party systems. A cloud service provider is just
another example of a third-party system, and organisations must apply the same
rules of handling third-party systems in this case. It is already clear that organisa-
tions are concerned at the prospect of private data going to the cloud. The cloud
service providers themselves recommend that if private data is sent onto their sys-
tems, it must be encrypted, removed or redacted. The question then arises “How can
the private data be automatically encrypted, removed, or redacted before sending it
up to the cloud service provider?”; that is, “How can the whole process be auto-
mated?”. It is known that encryption, in particular, is a CPU-intensive process which
threatens to add signifi cant latency to the process.

 Any solution implemented should broker the connection to the cloud service and
automatically encrypt any information an organisation does not want to share via a
third party. For example, this could include private or sensitive employee or cus-
tomer data such as home addresses or social security numbers, or patient data in a
medical context. Security engineers should look to provide for on-the-fl y data pro-
tection by detecting private or sensitive data within the message being sent up to the
cloud service provider and encrypting it such that only the originating organisation
can decrypt it later. Depending on the policy, the private data could also be removed
or redacted from the originating data but then reinserted when the data is requested
back from the cloud service provider.

3 Limitations and Challenges in Cloud-Based Applications Development

70

3.3.1.2 Traceability and Audit

 As an organisational requirement, in order to monitor the fi nancial consumption of
a rented or a paid for technology or service, the fi nancial department needs to keep
track of the units of usage and audit trail. The cloud service providers themselves
provide this information on most occasions, but in the case of a dispute, it is impor-
tant to have an independent audit trail. Audit trails provide valuable information
about how an organisation’s employees are interacting with specifi c cloud services,
legitimately or otherwise.

 The end-user organisation could consider a cloud service broker (CSB) solution
(such as CloudKick , CloudSwitch , Eucalyptus), as a means to create an indepen-
dent audit trail of its cloud service consumption. Once armed with his/her own
records of cloud service activity, the security engineer can confi dently address any
concerns over billing or to verify employee activity. A CSB should provide report-
ing tools to allow organisations to actively monitor how services are being used.
There are multiple reasons why an organisation may want a record of cloud activity,
which leads us to discuss the issue of governance [19].

3.3.2 Challenges in Case of SaaS

3.3.2.1 Governance: Applying Restrictions and Exit Strategy

 Being a third-party service, cloud resources need to have controlled and accounted
access. Governance in cloud computing is when an organisation wants to prevent
rogue (or unauthorised) employees from misusing a service. For example, the organ-
isation may want to ensure that a user working in marketing part of the application
can only access specifi c leads and does not have access to other restricted areas.
Another example is that an organisation may wish to control how many virtual
machines can be spun up by employees, and, indeed, that those same machines are
spun down later when they are no longer needed. So-called rogue cloud usage must
also be detected, so that the employees setting up their own accounts for using a
cloud service are detected and brought under an appropriate governance umbrella.

 Whilst cloud service providers offer varying degrees of cloud service monitor-
ing, an organisation should consider implementing its own cloud service gover-
nance framework. The need for this independent control is of particular benefi t
when an organisation is using multiple SaaS providers, that is, HR services, ERP
and CRM systems. However, in such a scenario, the security engineers also need to
be aware that different cloud providers have different methods of accessing infor-
mation. They also have different security models on top of that.

 That points to the solution provided by a cloud broker, which brokers the differ-
ent connections and essentially smoothes over the differences between them. This
means organisations can use various services together but only have to interact
with a perfectly confi gured CSB application. In situations where there is something

N. Pramod et al.

71

relatively commoditised like storage as a service, they can be used interchangeably.
This solves the issue of what to do if a cloud provider becomes unreliable or goes
down and means the organisation can spread the usage across different providers.
In fact, organisations should not have to get into the technical weeds of being able
to understand or mitigate between different interfaces. They should be able to move
up a level where they are using the cloud for the benefi ts of saving money.

3.3.2.2 Data Encryption

 As discussed earlier, when moving data onto a third-party infrastructure, secrecy
can be one of the factors for security. This applies to storage infrastructure service
as well. Most of the companies are now moving for a cloud-based storage solution,
and this calls for an important aspect of secrecy, encryption. Encryption can be
handled in many ways. It must also be noted that encrypting data is a CPU-intense
process. Many organisations prefer to handle encryption in-house; that is, they pre-
fer to generate own keys and decide on a particular encryption algorithm to further
increase confi dentiality. Cloud storage provider also provides the encryption facility
at the consumer end with unique and dynamically generated consumer-specifi c
encryption keys. The latest trends suggest that organisations are making use of
CSBs to accomplish this task. It is interesting to note that many organisations prefer
providers whose data centres are accessible and have better traceability than others
where it is diffi cult to track the data being sent onto cloud.

3.3.3 Challenges Relating to SaaS, PaaS, IaaS

3.3.3.1 Using API Keys

 Many cloud services are accessed using simple REST [20] Web services interfaces.
These are commonly called “APIs”, since they are similar in concept to the more
heavyweight C++ or Java APIs used by programmers, though they are much easier
to leverage from a Web page or from a mobile phone, hence their increasing ubiquity.
In order to access these services, an API key is used. These are similar in some ways
to passwords. They allow organisations to access the cloud provider. For example, if
an organisation is using a SaaS offering, it will often be provided with an API key.
This is one security measure employed by the provider to increase accountability;
that is, if in case something goes wrong, then that can be easily tracked as every
application instance running would have a unique API key (which is associated with
a particular user credential) and the source application for the cause of the mistake
would also bear an API key. Hence, the misuse of a correct application can be only
through misuse of API keys, and it becomes important to protect them.

 Consider the example of Google Apps. If an organisation wishes to enable single
sign-on to their Google Apps (so that their users can access their email without

3 Limitations and Challenges in Cloud-Based Applications Development

72

having to log in a second time), then this access is via API keys. If these keys were
to be stolen, then an attacker would have access to the email of every person in that
organisation.

 The casual use and sharing of API keys is an accident waiting to happen. Protection
of API keys can be performed by encrypting them when they are stored on the fi le
system, by storing them within a hardware security module (HSM) or by employing
more sophisticated security systems such as Kerberos [21] to monitor single sign-on.

3.4 Challenges for Application Developers

 An application developer comes into picture in service models where the organisa-
tion has control over applications and computing resources. Hence, this perspective
is mainly applicable to PaaS where application development is on a particular third-
party cloud platform and to IaaS where the choice of platform is with the organisa-
tion, and over the chosen platform the developer writes applications. The following
are a few challenges currently faced by programmers and application developers in
developing applications on cloud platforms:

3.4.1 Lack of Standardisation

 Cloud is still in its very early stages of development. There has been a surge in
enterprises adopting cloud technologies, but on the other hand, the technology has
not emerged enough to handle issues with this surge. The growth in different indus-
tries has been very self-centred, that is, the cloud providers have developed their
own APIs, virtualisation techniques, management techniques, etc. From a develop-
er’s perspective, every cloud provider supports different programming language and
syntax requirement, though most of them expose hash-based data interfaces or more
commonly JSON or Xml. This needs immediate attention, and steps must be taken
to standardise interfaces and programming methods. In case of conventional coun-
terpart, an application developed in PERL or PHP works fi ne when the application
is moved from one host to another or when there is a change in operations system.
Considerable developmental efforts are required in order to move from one cloud
provider to another which in turn implies that the cost of migration is signifi cantly
high. History has shown us that languages like SQL and C were standardised to stop
undesired versions and proliferation.

3.4.2 Lack of Additional Programming Support

 One of the key characteristics of good Web applications is that they are highly avail-
able. In order for this to be possible in a cloud application, it must be made to
dynamically replicate and mirror on machines across cloud with ease. Once this is

N. Pramod et al.

73

done, the load balancing servers can serve these applications on demand, hence
increasing availability and without delays, that is, decrease in latency. As most of
the cloud platform providers employ multi-tenancy model, servicing hundreds of
application forces them to automate the task of mirroring and replication. In order
to achieve this seamlessly, the application must use very little or no state informa-
tion. The state variables include transactional or server variables, static variables
and variables which are present in the framework of the whole application. These
variables are always available in case of traditional environment as there is a static
application server and memory where they can be stored and accessed, but these are
very hard to fi nd in a cloud environment. One of the ways of handling this situation
is to make use of a datastore or the cache store. Restriction on installing third-party
libraries, limited or no access with write permission to fi le systems hinders the capa-
bility of an application to store state information and hence forces an organisation
to use the providers’ datastore service which comes at a price.

3.4.3 Metrics and Best Practices

 Cloud follows a pay-as-you-use policy, and, hence, consumers pay for almost every
bit of CPU usage. This necessitates the provider to present appropriate metrics on
processor usage and memory. A profi le of the application with the skeleton of
classes or functions and their corresponding execution time, memory used and pro-
cessing power utilised, etc. will help the developer tune the code to optimise the use
of available processing power by choosing e.g. a different data structure or algo-
rithm with lesser time and space complexity

 One of the solutions to this concern can be provided by the cloud host by abstract-
ing the common code patterns which are frequently used into optimal default librar-
ies as the cloud provider could easily employ optimisation techniques which would
suit the hardware underneath and the operating system used. This helps the devel-
oper to be assured that a piece of code is employing optimal techniques to produce
the desired effect. As an example, Apache PIG [22] gives a scripting-like interface
to Apache Hadoop’s [23] HDFS for analysing large-scale datasets.

 In the end, the summary of cloud service models and their providers, properties,
access to resources and key challenges can be tabulated as in Table 3.1 .

3.5 Conclusion

 Cloud applications certainly have taken the IT industry to a new high, but like every
other technology, they have come short of a few things. In the search of exploiting
benefi ts of cloud applications, the inevitable trail of challenges has followed them
all along. The challenges in employing cloud services are discussed in this chapter.
The security challenges which are more specifi c to a type of service, that is, the type

3 Limitations and Challenges in Cloud-Based Applications Development

74

of service model, are also described. With emerging trends in cloud-based applica-
tions development, the time has come to actually take a look at the pitfalls and
address them. The chapter has given an insight into how these challenges can be
overcome.

 The major of all the concern turns out to be security that needs serious attention.
The overall conclusion is that cloud computing is in general prepared to success-
fully host most typical Web applications with added benefi ts such as cost savings,
but applications with the following properties need more careful study before their
deployment:

• Have strict latency or other network performance requirements.
• Require working with large datasets.
• Needs for availability are critical.

 As a developer, one would like to see much advancement in terms of the devel-
opmental tool kit and the standardisation of APIs across various cloud development
platforms in the near future. This would also help in the transition from traditional
application to cloud-based environment as the intellectual investment required to
bring about this transition is less, and more developers can move from traditional
application development to cloud.

 References

 1. Mell, P., Grance, T.: The NIST Defi nition of Cloud Computing. Special Publication 800–145,
September 2001

 2. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision, hype, and
reality for delivering it services as computing utilities. In: High Performance Computing
and Communications, 2008, HPCC ’08, Dalian, China. 10th IEEE International Conference,
pp. 5–13 (2008)

 3. Gong, C., et al.: The characteristics of cloud computing. In: 2010 39th International Conference
on Parallel Processing Workshops, San Diego

 4. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: State-of-the-art and research challenges.
J. Internet Serv. Appl. 1 (1), 7–18 (2010)

 5. Cloud Computing: What is infrastructure as a service. http://technet.microsoft.com/en-us/
magazine/hh509051.aspx

 6. Wang, L., Tao, J., Kunze, M., Castellanos, A.C., Kramer, D., Karl, W.: Scientifi c cloud com-
puting: early defi nition and experience. 10th IEEE Int. Conf. High Perform. Comput. Commun.
 9 (3), 825–830 (2008)

 7. Ramgovind, S., Eloff, M.M., Smith, E.: The management of security in cloud computing. In:
PROC 2010 I.E. International Conference on Cloud Computing, Indianapolis, USA (2010)

 8. API and usage documentation for developer using Rackspace service. http://docs.rackspace.com
 9. Wu, R., Ahn, G., Hongxin Hu, Singhal M.: Information fl ow control in cloud computing. In:

Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom),
2010 6th International Conference, Brisbane, Australia, pp. 17. IEEE (2010)

 10. Shimba, F.: Cloud computing: strategies for cloud computing adoption. Masters Dissertation,
Dublin Institute of Technology (2010)

 11. About STAR: https://cloudsecurityalliance.org/star/faq/
 12. Description of standard service by TripWire. http://www.tripwire.com/services/standard/
 13. Description of Custom service by TripWire. http://www.tripwire.com/services/custom/

N. Pramod et al.

http://technet.microsoft.com/en-us/magazine/hh509051.aspx
http://technet.microsoft.com/en-us/magazine/hh509051.aspx
http://docs.rackspace.com/
https://cloudsecurityalliance.org/star/faq/
http://www.tripwire.com/services/standard/
http://www.tripwire.com/services/custom/

75

 14. Ko, R.K.L., Jagadpramana, P., Mowbray, M., Pearson, S., Kirchberg, M., Liang, Lee, B.S., HP
Laboratories: TrustCloud: a framework for accountability and trust in cloud computing. http://
www.hpl.hp.com/techreports/2011/HPL-2011-38.pdf

 15. Minnear, R.: Latency: The Achilles Heel of cloud computing, 9 March 2011. Cloud Expo:
Article, Cloud Comput. J. http://cloudcomputing.sys-con.com/node/1745523 (2011)

 16. Kuyoro, S.O., Ibikunle, F., Awodele, O.: Cloud computing security issues and challenges. Int.
J. Comput. Netw. 3 (5) (2011)

 17. FedRAMP: U.S General Services Administration Initiative. http://www.gsa.gov/portal/
category/102371

 18. Security Guidance for Critical Areas of Focus in Cloud Computing V2.1, Prepared by CSA
2009. https://cloudsecurityalliance.org/csaguide.pdf

 19. Weixiang, S., et al.: Cloud service broker, March 2012. http://tools.ietf.org/pdf/draft-shao-
opsawg-cloud-service-broker-03.pdf (2012)

 20. Tyagi, S.: RESTful web service, August 2006. http://www.oracle.com/technetwork/articles/
javase/index-137171.html (2006)

 21. Kerberos in the Cloud: Use Case Scenarios. https://www.oasis-open.org/committees/down-
load.php/38245/Kerberos-Cloud-use-cases-11june2010.pdf

 22. Apache PIG: http://pig.apache.org/
 23. Apache Hadoop: http://hadoop.apache.org/
 24. SAAS, PAAS and IAAS – Making Cloud Computing Less Cloudy. http://cioresearchcenter.

com/2010/12/107/

3 Limitations and Challenges in Cloud-Based Applications Development

http://www.hpl.hp.com/techreports/2011/HPL-2011-38.pdf
http://www.hpl.hp.com/techreports/2011/HPL-2011-38.pdf
http://cloudcomputing.sys-con.com/node/1745523
http://www.gsa.gov/portal/category/102371
http://www.gsa.gov/portal/category/102371
https://cloudsecurityalliance.org/csaguide.pdf
http://tools.ietf.org/pdf/draft-shao-opsawg-cloud-service-broker-03.pdf
http://tools.ietf.org/pdf/draft-shao-opsawg-cloud-service-broker-03.pdf
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html
https://www.oasis-open.org/committees/download.php/38245/Kerberos-Cloud-use-cases-11june2010.pdf
https://www.oasis-open.org/committees/download.php/38245/Kerberos-Cloud-use-cases-11june2010.pdf
http://pig.apache.org/
http://hadoop.apache.org/
http://cioresearchcenter.com/2010/12/107/
http://cioresearchcenter.com/2010/12/107/

 Part II
 Software Development Life Cycle

for Cloud Platform

79Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_4, © Springer-Verlag London 2013

 Abstract Cloud computing provides a natural extension to service-oriented
architecture (SOA) and the World Wide Web. It leads to a complete paradigm shift
in a number of areas such as software development, deployment, IT usage, and
software services industry. Among these areas, the impact on software development
life cycle needs special attention as they form a pivotal part in the cloud assessment
and migration. In this context, some key aspects include (a) implications of cloud-
based (public cloud based) solution on the privacy requirements, (b) implications of
cloud- based solution on testing services and project testing methodology, and (c)
implications of cloud-based solution of confi guration management. In this chapter,
we propose to address the impacts, strategies, and best practices to minimize the
negative effects of these implications. The chapter discusses variations to software
development life cycle and related processes with respect to private cloud, public
cloud, and hybrid cloud models. These variations are analyzed based on the usage
pattern of each cloud-based solution, especially with respect to requirement analy-
sis, architecture and design, software construction, testing, and rollout. Relevant
processes such as project management, confi guration management, and release
management are also discussed. The chapter concludes with a summary of various
cloud usage patterns and their impact on each of the software development life cycle
stages. These usage patterns and the impacts are generalized and can form the back-
bone of an enterprise cloud application development methodology.

 Keywords Software development life cycle • Usage patterns • Design for failure
• Design for parallelism • Information architecture • Private cloud • Public cloud

 Chapter 4
 Impact of Cloud Services on Software
Development Life Cycle

 Radha Krishna and R. Jayakrishnan

 R. Krishna (*) • R. Jayakrishnan
 Infosys Ltd., 4252, 65th Cross, Kumaraswamy Layout II Stage, Bangalore 560078, India
 e-mail: radha@gmail.com; jkramdas@infosys.com

80

4.1 Introduction

 It is generally agreed that evolution of a new paradigm requires adaptation in usage
patterns and associated functional areas to fully benefi t from the paradigm shift [1].
Likewise, to leverage the benefi t of cloud paradigm shift in software segment, soft-
ware development life cycle (SDLC) must continuously adopt new changes to be
the guideline for development/implementation of cloud-based projects. The user
communities, such as management professionals, academicians/researchers, or
software engineers, are very much keen in understanding and adopting the current
state and new changes in SDLC while adapting to the paradigm changes. This chap-
ter mainly describes the changes that are required in SDLC (part of software engi-
neering process) while adopting the cloud computing environment. An SDLC
typically comprises the following phases:

• Requirements
• Architecture
• Design
• Implementation
• Testing
• Production
• Support and Maintenance

 To truly benefi t from cloud environment, software development teams should
look at the cloud computing environment as a new development paradigm and
leverage it to lead to differentiated value. The rest of the chapter explains position-
ing of the application development process to enable to take the advantage of the
distributed nature of cloud environment.

4.2 Requirement Analysis

 The industry, in general, tends to think of cloud as an enabler or rather a solution
and hence believes that it has no bearing on requirements. The truth is that cloud is
more of a choice at enterprise level. Hence, the fi tment of the choice is an important
aspect of the analysis phase. Along with the choice, the guidelines and checklists
that aid in requirement analysis are also required for applications moving to cloud
to be successful. The requirement analysis needs to address this assessment. These
relevant requirements are mostly non-functional in nature.

 This implies the following additional tasks that need to be planned as part of
requirement analysis:

• Cloud assessment
• Cloud usage pattern identifi cation and capturing data points to support requirement

analysis based on usage patterns

R. Krishna and R. Jayakrishnan

81

4.3 Cloud Assessment

 Cloud readiness assessment will help to evaluate the cloud readiness and applicability
for an enterprise. The assessment also helps to determine the business case and return
on investment. Typical assessment questions are listed below for reference. Note that
this list is not exhaustive:

• Does cloud architecture fi t the requirements for the application?
• How interconnected is this application with other application in the enterprise—for

public cloud, can these interfaces be exposed for access from external networks?
• Is the enterprise comfortable with public cloud, or should the enterprise focus

only on private cloud option among other options?
• Identifying suitable cloud service provider (IAAS/PAAS [2]—and the specifi c

vendor under the category)
• Defi ning the strategy in adopting cloud for future projects
• Assessing the cost of using cloud (private or public cloud) (compare—capital

expense of hosted option vs. running cost of cloud option)
• How would applications be monitored after they are hosted on public cloud?

 It is important to note that cloud assessment guidelines are defi ned at enterprise
level. The enterprise can optionally create tools to aid the projects and new initia-
tives to perform cloud assessment.

4.4 Usage Patterns and Requirements Capture

 Below we present a list of common usage patterns [3] and corresponding require-
ment capturing questionnaire that helps to arrive at workload of an application and
decide on its readiness for cloud-based architecture.

4.4.1 Constant Usage of Cloud Resources over Time

 This pattern is applicable to both internal and external (e.g., Web sites) applications
that are constantly used by enterprise users/external users, and there is little variance
in load and usage of these applications. Requirement analysis should detail out the
following information:

• Availability of applications at regular intervals.
• Defi ning the strategy for application downtime and uptime.
• More requirement analysis is required in designing the respective scripts to make

the application available at a required point of time.
• Defi ning limits of data loss in case of application crash.

4 Impact of Cloud Services on Software Development Life Cycle

82

4.4.2 Cyclic Internal Load

 This pattern applies to recurrent business functionalities like batch jobs that execute
at end of day and data processing applications.

• Detail out the I/O volume required to satisfy the business process (costing of the
cloud solution is very I/O sensitive).

4.4.3 Cyclic External Load

 This pattern includes applications that are developed to serve a particular demand,
like publishing examination results/election campaign and sites related to
entertainment.

• Detail out level of concurrency required across time periods and hence amount
of parallelism that can be applied to improve the performance of the system.

4.4.4 Spiked Internal Load

 This pattern applies to executing one-time jobs for processing at a given point in time.

• Detail out requirements on identifying number of concurrent users accessing the
system.

• Identify volume of data that is required to process the business functionality.
• Detail out the network bandwidth and expected delay in response while process-

ing heavy load business functionality.
• Analyze variety of data that is used in day-to-day business.
• Defi ne set of business functionalities and business components that can execute

side by side.
• Identify reusability of components.
• Identify different failure scenarios and respective handling mechanisms.

4.4.5 Spiked External Load

 This pattern applies to applications that should be able to handle a sudden load which
may come from an external source example: customers, vendors, or public users.

• Defi ne the limit of independence to access the application.
• Identify and analyze country-level regulations to handle the load.
• Identify industry-specifi c regulations while handling the load.
• Identify institutional specifi c fragility and capacity challenges.

R. Krishna and R. Jayakrishnan

83

4.4.6 Steady Growth over Time

 This pattern usually applies to a mature application or Web site, wherein as additional
users are added, growth and resources are tracked.

• Cost of maintaining application on cloud

4.5 Architecture

 In general, software that is to be deployed in cloud environments should be archi-
tected differently than on-premise hosted/deployed applications. Cloud computing
as a development environment for distributed model has led to emergence of variet-
ies of design and architecture principles. The new architecture paradigm requires
improving the thought process for horizontally scaling out the architectures by
developing and designing large number of smaller components that are loosely cou-
pled and easy to deploy in distributed environments.

 Cloud computing solutions should operate on a network which is capable of
handling massive data transactions. The software development teams should be
aware that apart from general architecture and design principles, one needs special
skills to handle solutions with high I/O volume/velocity, and architects should come
up with a strategic and competitive skills to leverage the service provided by distrib-
uted environment vendors.

 With every increase in demand of quality software from clients, enterprises must
produce the software that can be adapted to new environments without degrading the
existing parameters of quality of service for the application. To take the advantage of
distributed environment while developing cloud-based applications, there are couple
of changes and additions identifi ed that are critical in determining the scalability of
the architecture to take the advantage of scalable infrastructure available in distrib-
uted environment. For example, architects should start thinking of architecting and
designing applications that support multi-tenancy, concurrency management, de-
normalized partitioned and shared-nothing data, asynchronous and parallel process-
ing, service-oriented composition supporting restful services [15], etc.

4.6 Information Architecture

 As the world is growing and becoming more connected every day, data plays a vital
role in software application. The key in building the information architecture is to
closely align information to business process by availing the features available in
cloud environment. This process enables all stakeholders like business leaders,
vendors, consumers, service providers, users, and all other stakeholders in evaluating,
reconciling, and prioritizing on the information vision and related road map. The

4 Impact of Cloud Services on Software Development Life Cycle

84

information architecture should provide great care that should be taken in defi ning
strategy on development approach ensuring right decisions in development and
execution of an application.

 Understanding the key considerations of data architecture in distributed environ-
ment and trade-offs for decisions made related to technology and architecture choices
in cloud environments is essential for good information architecture. For example,
decisions like data sharing is very crucial while defi ning the data services. This topic
mainly describes different varieties of data (relational, geospatial, unstructured data,
etc.) and different classifi cations and compliance of data (internal and external).

 The information architecture provides information for relevant concepts, frame-
works, and services to access information in unique, consistent, and integrated way by
adopting new cutting-edge technology and guarantees responsiveness and trustworthy
information. Following are core decision points of information architecture:

• Access Information: Information services should provide unconstrained access
to the right users at the right time.

• Reusable Services: Facilitate discovery, selection, and reuse of services and
encourage uniformity of services.

• Information Governance: Provide proper utilities to support effi ciency of infor-
mation governance strategy.

• Standards: Defi ne set of standards to information where technology will support
process simplifi cation.

4.7 Information Security

 Security is one of the important nonfunctional requirements demanded by clients.
Information security plays a vital role in distributed environments while defi ning
information architecture. The level of security applied depends on the type of infor-
mation (Fig. 4.1).

 In general, information is classifi ed into four main categories as defi ned in
Table 4.1 .

 Authentication , authorization, and data protection are different mechanisms of
implementing security that every system should adopt. These security mechanisms need
to be applied to information which may be available in different formats and dates like:

• Information at Rest
• Information in Transit
• Transient Information
• Information CRUD

 Table 4.2 provides information on strategies for various information categoriza-
tion and security options.

 Information architecture should help the system in segregating information into
the above-mentioned categories, and each category will have challenging informa-
tion classifi cation for different security mechanisms as defi ned in Table 4.3 .

R. Krishna and R. Jayakrishnan

85

A. C
at

eg
or

ize

D. M
ove

B. Classify

C. R
es

po
ns

ibi
lity

Information
Security

 Fig. 4.1 Levels of
information security

 Table 4.1 Information categories

 Public Private Confi dential Secret

 Data available
for general
public

 Data private
to organization

 Data to be disclosed on
need-to-know basis after
approval from the owner

 Data never disclosed
and can be seen only
by the owner of the data

 For Ex: For Ex: For Ex:
 Intranet

information
 Customer information Password

 Org chart Organization policy
and would-be changes

 Pin number

 List of
employees

 Source code for business
critical modules

 SSN

 Source code
for in-house/
utility modules

 Credit card number,
authorization code, and
expiry data combination

 For Ex: Account number, last 4
digits of SSN, birth
date combination

 Annual reports Source code
for decryption Share price

 Table 4.3 should be understood with the following in mind:

• Authenticating the access to public information is optional.
• Authenticating the access to information that is private to the organization is

mandatory, and the same is applicable for the information that is classifi ed under
confi dential and secret categories.

• Authorizing the access to public/private information is optional.
• Authorizing the access to confi dential and secret information is mandatory.
• Protecting the access to public/private information is optional.
• Protecting the access to confi dential and secret information is mandatory.

4 Impact of Cloud Services on Software Development Life Cycle

86

 Table 4.2 Mechanisms to implement security

 Authentication Authorization Protection

 Information
at rest

 Logon credentials User group-based
access. User groups
are created based
on department and
thus represent
users’ entitlements

 Encryption at two levels:
encryption at storage
and encryption at
individual record or
fi elds

 XKMS can be used
instead of PKI for key
management services

 Information
in transit

 User certifi cate for B2C
communications

 The XACML standards
and policy
generated through
that provide
authorization for
publish and
subscribe as well as
B2C Web services

 4 levels of protection

 Domain certifi cate
for B2B
communications

 Domain authentication
via SSL (2-way)

 SAML2 standards for
user token-based
authentication

 SAML2 attributes
encrypted using
a different key,
verifi cation of token
or attributes on
federation DB, and
fi nally any message
level encryption for
the SOAP message

 Transient or
temporary
information

 All the above options All the above options All the above options

 CRUD operation
on information

 Logon credentials Role-based access

 Table 4.3 Security mechanisms vs. information categories

 Public Private Confi dential Secret

 Authentication O M M M
 Authorization O O M M
 Protection O O M M

 M mandatory, O optional

 Information security [10] defi nes responsibility of different stakeholders
(consumer/vendor) based on the different cloud environments. Table 4.4 provides
details about the responsibilities of different stakeholders.

 As we move lower down the stack, consumer should be responsible in imple-
menting security features:

• Vendor —the organization who provides cloud environments
• Consumer —the organization who uses cloud environment provided vendor

 Table 4.5 defi nes different kind of information that may be moved to cloud environ-
ment based on the responsibility the vendor takes with respect to security of the data.

R. Krishna and R. Jayakrishnan

87

 This implies that confi dential data can be in cloud but needs encryption and
token-based authentication supported by cloud provider given that organization
policy allows it.

4.8 Non-functional Information Details

 The following non-functional information requirements need to be analyzed as part
of information architecture.

4.8.1 Volume

 As the world is growing day by day being more connected, sizing the data volume
is mandatory non-functional information to be captured.

• More connected human resources = more data
• More connected with devices (phones, tablets, etc.) = more data
• How much data need to be required in a day?
• What is the expected data that can be added at a given point in time?

4.8.2 Variety

 There are many varieties of data used in day-to-day business. The very fi rst that
comes to mind is relational and transactional data, but other sets of data include:

• Relational
• Confi guration
• Graphs

 Table 4.4 Security with respect to cloud services

 IaaS PaaS SaaS BPaaS

 Physical security (hardware/infrastructure) Vendor Vendor Vendor Vendor
 Network security (data over wire) Consumer Consumer Vendor Vendor
 System security (operating systems,

Web servers, message servers, etc.)
 Consumer Vendor Vendor Vendor

 Application security (custom applications) Consumer Consumer Vendor Vendor

 Table 4.5 Data security with respect to information categories

 Public Private Confi dential Secret

 Data at rest Yes Yes Responsibility on vendor No
 Transient or temporary data Yes Yes Responsibility on vendor and consumer No
 Data in transit Yes Yes Responsibility on consumer No

4 Impact of Cloud Services on Software Development Life Cycle

88

• Geospatial
• Documents
• Unstructured data (videos, audio, text)

4.8.3 Internal and External

 Internal requirements include:

• High impact
• Medium impact
• Low impact
• External requirements include:
• Regulations (country level/region level)
• Industry specifi c (SWIFT/HIPAA)

4.8.4 Ability to Query

 The relevant requirements are:

• The ability to query or search the data stored in a distributed environment
• Level of querying demanded

 – Single fi eld, multiple fi elds in a table, fully relational data

• Scope of query

 – Single logical partition or data distributed across multiple logical partitions

• Real-time data need

 – Query intervals and responsiveness
 – Data freshness

4.9 Partitioning Strategy

 Partitioning data involves a trade-off between scalability, consistency, and fl exibility.
The main needs that infl uence data partitions are:

• Data size that is stored on a single server
• Transaction volume that needs to be processed on a single server
• Data variety that is stored in different places

 In highly elastic scenarios of distributed environments, partitions may be needed
for just few hours or days. As part of just-in-time partitioning strategy, if load is
predictable, then:

R. Krishna and R. Jayakrishnan

89

• Partition before load commences
• Un-partition after load moderates

4.10 Information Processing

 While processing information in distributed environment , sometimes it is manda-
tory to process large set of information. It is always a good practice to implement
parallel data processing that is simple in concept as explained below.

• Take large problem.
• Break it into smaller parts.
• Distribute parts into multiple nodes for solving.
• Aggregate all smaller solutions into complete solution.

 Architecture should identify all independent processes and implement parallel-
ism wherever applicable.

4.11 Information Backup Strategy

 In distributed cloud environment, backups can be on-premise to cloud, cloud to
on- premise, or cloud to cloud. Architecture should defi ne proper service-level
agreements between cloud vendor and cloud consumer and should come up with
appropriate backup strategy.

4.12 Cost as Non-functional Requirement

 As cloud computing is methodology of using tools and accessing applications from
the Internet, cloud computing always reduces IT cost is a general misconception
everyone has. The success of cloud computing vendors also depends on pricing . In
general, while cloud computing provides cost savings for enterprises when setting
up initial infrastructure, running costs and other operational costs may negate the
initial savings enterprises make. But it is always suggestible to compare the initial
cost of setup with an on-premise option with the cost per month cloud option and
then evaluate the cloud migration strategy.

 Costing on cloud is of type of pay-per-use model. The service providers charge
separately on multiple factors like number of instances, bandwidth, load balancing,
transaction volume, and other factors.

 There are four models [4] currently being used across various cloud providers in
order to cost out their cloud solutions. Architects should identify the most cost-
effective costing model for a given set of requirements. Also, sensitivity analysis for
the costing model should be done based on the growth projections for the system.

4 Impact of Cloud Services on Software Development Life Cycle

90

4.12.1 Weighted Cloud Costing

 This is perhaps the most indirect method of dividing up the cloud service costs. It
looks at each business unit as a part of the whole company. That might be looked at
from a budgetary perspective, or it might take into account headcount. You then
divide up the cost of your cloud solutions to each business unit, based on this
weighted percentage. This is the easiest and least accurate way to divide costs.

4.12.2 Tiered Cloud Costing

 Another approach is to break up business units or other groups into tiers. Each tier
requires greater resources than the tier below it. You charge a lower rate to the busi-
ness units and groups who use the most resources, refl ecting a discount based on
demand. You then offer other discounts, for example, to those groups that are able
to do their own server provisioning or management.

4.12.3 Costing That Differentiates Service and Infrastructure

 This type of costing accounts for your infrastructure costs separately from your
application costs. Thus, your data center expenses come in a different direction
from your cloud computing solutions. This means that you can still charge a base-
line per-head infrastructure charge while recovering either a tiered or consumption-
based cost for your cloud solutions.

4.12.4 Consumption Cloud Costing

 Consumption is the costing method that is most accurate and that requires the most
resources. It looks at the actual amounts of service time that each unit requires and
charges them accordingly.

4.13 Usage Patterns and Architecture

 The previous sections explained how cloud has made an impact to architectural
decisions at a high level. With this high-level overview in mind, let us analyze the
cloud usage patterns explained in the Requirements section. Just as cloud usage pat-
terns impact requirements in a standard way, their impacts on other life cycle stages
are also in a standard manner.

R. Krishna and R. Jayakrishnan

91

4.13.1 Constant Usage of Cloud Resources over Time

 This pattern is typically utilized to save cost and share many non-frequent and non-
critical applications across the same virtual machine.

• Uses consumption cloud costing
• Calculates cost based on predictive usage
• Isolated applications that do not typically need real-time data and only update

master tables

4.13.2 Cyclic Internal Load

 This pattern is used to improve availability. Since it is internal load , private cloud
can be an option. Cloud bursting can be thought of where data need not be real time.

4.13.3 Cyclic External Load

 This pattern is for brand new public cloud application. Here cloud characteristics
like multi-tenancy and parallelism become important.

4.13.4 Spiked Internal Load

 This pattern is typical to cloud bursting scenario.

4.13.5 Spiked External Load

 This pattern is typically an auto-scaling scenario.

4.13.6 Steady Growth over Time

 This pattern applies usually for a mature application or Web site; as additional users
are added, growth and resources track accordingly.

4.14 Design

 The design patterns guide the composition of modules into complete systems. In
addition to existing design patterns and number of other common patterns, applica-
tions developed for distributed environments need to work in B2C services and use

4 Impact of Cloud Services on Software Development Life Cycle

92

respective credentials while accessing. Application designers should start thinking
of designing applications for failure analysis and parallelism [5] to avail the cloud
infrastructure.

4.15 Design for Parallelism [9]

 Designing and programming to leverage multiple cores and multiple processors is
called parallel programming . Nowadays, CPU manufacturers are shifting their
focus on increasing the CPU core, and speeding up CPU is stagnated; especially this
is happening in distributed environments like cloud. This is a major setback for
programmer community because standard threading concept will not automatically
run faster as expected because of those extra cores.

 All server-based applications in distributed environment should leverage the
multiple cores, where each thread can independently handle a separate request.
Parallel programming in distributed environment should leverage multi-core pro-
cessors to speed up computationally intensive applications. To leverage parallelism
in distributed environment, the design should:

• Partition computationally intensive code into multiple chunks
• Execute those chunks in parallel implementing multithreading and asynchronous

communications between these independent threads
• Collate the results once execution is completed in a thread-safe mode

 Parallelism [5] can be applied at both data level (data parallelism) and task level
(task parallelism).

4.15.1 Data Parallelism

 When multiple tasks need to be performed on many data values, parallelism can be
implemented by spawning threads that perform similar set of tasks on a subset of
data [13]. Data is partitioned across threads in this scenario (Fig. 4.2).

4.15.2 Task Parallelism

 Each processor executes a different thread on the same or different data. The tasks
that need to implement such functionality are partitioned into multiple units to exe-
cute on multiple processors in parallel. The tasks execute simultaneously on multi-
ple cores processing many different functions across data. Communication between
threads takes place as part of workfl ow defi ned for the context. This is also called
function parallelism or control parallelism (Fig. 4.3) .

R. Krishna and R. Jayakrishnan

93

Collection<IData>

For i=1 to 50
Do
Do
Do
Do

End For

For i=51 to 100
Do
Do
Do
Do

End For

For i=p to q
Do
Do
Do
Do

End For

Thread 1 Thread 2 Thread 3

 Fig. 4.2 Implementing data parallelism

p1 p5p4 p6p3p2 R1 R5R4 R6R3R2

p1

p5

p4

p6

p3

p2 R1 R2

R3 R4

R5 R6

(p1,p2,p3,p4,p5,p6).AsParallel()

Thread 1

Thread 2

Thread 3

 Fig. 4.3 Implementing task parallelism: [Tasks (p1,p2,p3,p4,p5,p6).ParallelExecute() = Result
(R1,R2,R3,R4,R5,R6)]

 Data parallelism is easier and scales better on highly parallel hardware, because
it reduces or eliminates shared data (thereby reducing contention and thread-safety
issues). Also, data parallelism leverages the fact that there are often more data val-
ues than discrete tasks, increasing the parallelism potential.

 Data parallelism is also conducive to structured parallelism, which means that
parallel work units start and fi nish in the same place in program. In contrast, task
parallelism tends to be unstructured, meaning that parallel work units may start and
fi nish in places scattered across your program. Structured parallelism is simpler and
less error-prone and allows you to farm the diffi cult job of partitioning and thread
coordination (and even result collation) out to libraries.

 A challenge in leveraging multi-cores is Amdahl’s law, which states that the
maximum performance improvement from parallelization is governed by the por-
tion of the code that must execute sequentially. For instance, if only two-thirds of an
algorithm’s execution time is parallelizable, you can never exceed a threefold per-
formance gain even with an infi nite number of cores.

4 Impact of Cloud Services on Software Development Life Cycle

94

 So, before proceeding, it is worth verifying the process of parallelization. It is also
worth considering whether your code is computationally intensive; optimization is often
the easiest and most effective approach for performance improvement. There is a trade-
off, though, in that some optimization techniques can make it harder to parallelize code.

 The easiest gains come with what is called embarrassingly parallel problem,
where a job can be divided easily into tasks that execute effi ciently on their own
(structured parallelism is very well suited to such problems). Examples include
many image processing tasks, ray tracing, and brute force approaches in mathemat-
ics or cryptography. An example of a non-embarrassingly parallel problem is imple-
menting an optimized version of the quicksort algorithm; a good result takes some
thought and may require unstructured parallelism.

 Though parallelism signifi cantly improves the performance in many scenarios,
parallelism introduces complexity that will lead to multiple problems that are not
common or have not been encountered at all. Following are some of the best prac-
tices that must be taken into account before designing the systems for parallelism:

• Do not assume parallelism is always faster, and do not assume all iterations
always execute in parallel.

• Always avoid keeping data in shared memory areas.
• Avoid over-parallelization.
• Avoid calls to non-thread-safe methods in parallel.
• Limit calls to thread-safe methods.
• Be aware of thread affi nity issues.

 The design for parallelism is an important criterion for both internal and external
steady load as well as spiked load usage patterns .

4.16 Design for Failure

 Failure analysis is a key pattern in deciding the behavior of application in failure
scenarios. Design for failure [6] mainly improves application availability and
ensures that application behaves as expected in a given environment. Design for
failure [7] is essential to avoid disruptions in cloud applications in outage scenarios.
Design for failure is imperative to take advantage of cost saving and agility offered
by cloud service providers.

 Following are some steps to be considered while designing applications for failure:

• Each application component must be deployed across redundant cloud compo-
nents, ideally with minimal or no common points of failure.

• Each application component must make no assumptions about the underlying
infrastructure—it must be able to adapt to changes in the infrastructure without
downtime.

• Each application component should be partition tolerant—in other words, it
should be able to survive network latency (or loss of communication) among the
nodes that support that component.

R. Krishna and R. Jayakrishnan

95

• Automation tools must be in place to orchestrate application responses to failures
or other changes in the infrastructure.

 Architects and designers should consider following key factors as part of enter-
prise application development:

• Do not look for alternatives to design for failure.
• Application should be decoupled into isolated workable components.
• Consider partitioning data into multiple relevant chunks and deploy across mul-

tiple geographically distinct partitions; this could be well possible in case of
NOSQL databases. It would be little diffi cult in case of RDBMS databases
because of data consistency nature of RDBMS systems.

• Application software should quickly identify failures and retry requests in case
of failure. This can be possible by running multiple redundant copies of service;
one can retry to route around failed or unreachable services.

• Make sure that the services are idempotent in nature. Idempotent services will
provide same results if executed once or multiple times.

• Defi ne a fault tree analysis for services. Fault tree analysis is a graphical repre-
sentation of the major faults or critical failures associated with a product, the
causes for the faults, and potential countermeasures.

 Design for failure is an important criterion for both internal and external steady
load usage patterns .

4.17 Build

 The additional impacts during build phase are typically centered on the organiza-
tions’ effort to reduce cost. The impacts are more in terms of planning and prioriti-
zation rather than software build. The key questions are:

• How often the continuous integration should deploy on cloud?
• Provisioning of development and testing environment, which the organization

decides the host as a cloud service.

4.18 Testing

 Software testing has undergone signifi cant progress in automation in recent
years. Global market pressures are pushing enterprises to deliver more for less.
Testing of applications deployed in cloud environment will be a little cumber-
some due to the availability of resources and diversity in cloud environment [14].
Network latency is unpredictable when applications are distributed across differ-
ent homogenous and heterogeneous cloud environments. Applications should be

4 Impact of Cloud Services on Software Development Life Cycle

96

tested for checking compatibility with different services and environments on
which the application is distributed [12]. The design of a system should emphasize
decoupling, and each decoupled component should be implemented to allow
independent testing. Modularization of a system will reduce testing effort.
Implementing test automation process will be a little tricky in cloud environ-
ment. This topic explains different patterns to be considered while testing an
application in cloud environment. Testing applications hosted on a distributed
environment should follow the guidelines below.

4.18.1 Diversity of Deployment Environments

 Cloud being a distributed environment , applications will be architected and designed
as smaller components that can exist on their own and that can be hosted on differ-
ent cloud and non-cloud environments and compatible for testing the functionality
implemented. There are three different kinds of deployment environments for
cloud-based applications [8]:

• A part of application is migrated to cloud, remaining part is available on-premise.
• Complete application is moved to cloud.
• Building the application in cloud itself.

 The testing paradigm should be changed from testing entire cycle of an applica-
tion to independently testing individual components. Integration testing and quality
testing should happen at component level and not at application level that generally
happens in non-cloud environments. Testing methodology should ensure virtualiza-
tion of cloud infrastructure, network latency , business logic of an application, and
the user experience.

 Data migration and security-level testing is required in scenarios for partial
migration to cloud.

4.18.2 Confi guration and Network-Level Challenges

 Cloud environment offers huge memory, storage [11], and processor power for
computing when compared to traditional in-house built applications. At the same
time, network landscape of cloud environment will have so many fi rewalls and need
to connect to different heterogeneous environments and data centers.

 Testing paradigm should ensure optimum memory usage and performance for all
desired set of confi guration and network bandwidth.

 Application should be tested for different access rights as application should be
connected to multiple components and storage areas to be accessed and should test
compatibility of different services that can be accessed through SOAP and REST in
both secured and non-secured way.

R. Krishna and R. Jayakrishnan

97

4.18.3 Changes in Application Development Methodologies

 In order to deliver the benefi ts of faster time to market, the application implementation
process will be changed from traditional software development models to newer ones.
Application will be componentized and build will be available for smaller compo-
nents instead of delivering a complete life cycle of functionality. Therefore, builds
will be available much earlier and that imposes higher demand on testing team to
reduce the testing life cycle without compromising on quality and coverage.

4.18.4 Application Limitations

 There will be some limitations at data level for both hybrid and public cloud envi-
ronments. As enterprises do not agree to have confi dential and secret data in cloud
environment, testing should ensure that no data other than public is allowed to
access by publicly hosted applications directly.

4.18.5 Data Synchronization

 As applications on cloud use data synchronization process to move the data across
different applications/environments, testing process should ensure that data syn-
chronization happens on time as expected. This testing should ensure data avail-
ability in heterogeneous environments.

4.18.6 Involved Extra Costing

 Application testing over cloud always includes extra I/O costs, bandwidth cost, and
other usage costs. Testing designers should segregate application testing into in-
house testing and cloud testing that will reduce extra cloud usage cost.

4.19 Impact on Version Control and Confi guration
Management

 The confi guration management and version control tools available today are rigid
and effort intensive in handling complex and dynamics of modern software. There
is a lack of analytics required to handle uncontrolled frequent changes to critical
decision-supportive information. There is no control on different kinds of artifacts
and monitoring different environments for different kind of deployments like partial

4 Impact of Cloud Services on Software Development Life Cycle

98

deployment, patch releases, and full and complete deployment, and creating respective
rollback scenarios is very diffi cult to achieve using the currently available tools.

 As cloud applications are distributed in nature, the changes in software also will
be distributed. The new confi guration management system should ensure the
changes happening across environments and should provide a consolidated view of
application stack. This facilitates delivery managers to monitor and control confi gu-
ration changes across various layers and environments of application software that
includes Web and application servers, databases, different third-party components,
sharewares, operating systems, and hardware.

4.20 Conclusion

 With this chapter, we have tried to visualize the different changes at each life cycle
stage due to cloud development and bucket them into different cloud usage patterns .
Just as the cloud solutions can have generalized standards and guidelines (which
organizations like BIAN are trying to address), the impact of cloud solutions on
software development methodology can also be standardized.

 Another point to highlight is the fact that cloud impact on SDLC is often
neglected as on surface; it seems as if there are not many differences. However, as
explained in this chapter, from privacy laws of different countries that can impact
requirements to consideration of cost of deployment on testing and implementation
processes, the impacts need to be fully analyzed and thought through.

 References

 1. Musings from David Chou: Architect, Microsoft, Cloud computing as a new development para-
digm, 20 July 2010. http://blogs.msdn.com/b/dachou/archive/2010/07/20/cloud- computing-
as-a-new-development-paradigm.aspx (2010)

 2. XOrient: Cloud computing services in a typical cloud ecosystem. http://www.xoriant.com/
Cloud-Computing-Services-SaaS-PaaS-IaaS-models.html (2012)

 3. Barr, J.: Amazon, six cloud usage patterns, 1 August 2011. http://cloudspring.com/cloud-
usage-patterns/ (2011)

 4. Nichols, C.: Top 4 cloud costing models, Wed, 28 March 2012. http://www.unitiv.com/it-
solutions-blog/bid/84527/Top-4-Cloud-Costing-Models (2012)

 5. Massingill, B.L., Mattson, T.G., Sanders, B.A.: Re-engineering for parallelism: an entry point
into PLPP (Pattern Language for Parallel Programming) for legacy applications. http://parlab.
eecs.berkeley.edu/wiki/_media/patterns/plpp.pdf (2006)

 6. Varia, J.: Architecture for the cloud: best practices. Amazon Web Services http://media.
amazonwebservices.com/AWS_Cloud_Best_Practices.pdf (2011)

 7. Reese, G.: The AWS outage: the cloud’s shining moment, 23 April 2011. http://broadcast.
oreilly.com/2011/04/the-aws-outage-the-clouds-shining-moment.html (2011)

 8. Naganathan, V.: Infosys, how is testing cloud based applications different from testing on
premise applications in QA clouds, 8 November 2011. http://www.infosysblogs.com/testing-
services/2011/11/how_is_testing_cloud_based_app.html (2011)

R. Krishna and R. Jayakrishnan

http://blogs.msdn.com/b/dachou/archive/2010/07/20/cloud-computing-as-a-new-development-paradigm.aspx
http://blogs.msdn.com/b/dachou/archive/2010/07/20/cloud-computing-as-a-new-development-paradigm.aspx
http://www.xoriant.com/Cloud-Computing-Services-SaaS-PaaS-IaaS-models.html
http://www.xoriant.com/Cloud-Computing-Services-SaaS-PaaS-IaaS-models.html
http://cloudspring.com/cloud-usage-patterns/
http://cloudspring.com/cloud-usage-patterns/
http://www.unitiv.com/it-solutions-blog/bid/84527/Top-4-Cloud-Costing-Models
http://www.unitiv.com/it-solutions-blog/bid/84527/Top-4-Cloud-Costing-Models
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/plpp.pdf
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/plpp.pdf
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://broadcast.oreilly.com/2011/04/the-aws-outage-the-clouds-shining-moment.html
http://broadcast.oreilly.com/2011/04/the-aws-outage-the-clouds-shining-moment.html
http://www.infosysblogs.com/testing-services/2011/11/how_is_testing_cloud_based_app.html
http://www.infosysblogs.com/testing-services/2011/11/how_is_testing_cloud_based_app.html

99

 9. Ramdas, J (Senior Technology Architect, Infosys LTD)., Srinivas, J (Principal Architect,
Infosys LTD).: Extend Java EE containers with cloud characteristics, 12 May 2011. www.ibm.
com/developerworks/cloud/library/cl-jeecontainercloud/ (2011)

 10. Godinez, M., Hechler, E., Koenig, K., Lockwood, S., Oberhofer, M., Schroeck, M.: The art of
enterprise architecture. http://www.amazon.com/Art-Enterprise-Information-Architecture-
Systems-Based/dp/0137035713 (2010)

 11. Arista, C.: Cloud networking: design patterns for “Cloud-Centric” application environments.
 http://www.techrepublic.com/whitepapers/cloud-networking-design-patterns-for-cloud-cen-
tric-application-environments/2393983 (2009)

 12. Kothandaraman, H.: Testing Applications n Cloud. LEF Grant Briefi ng. http://assets1.csc.
com/lef/downloads/LEFBriefi ng_TestingApplicationsCloud_021011.pdf (2011)

 13. Flynn, M.J.: Computer Architecture: Pipelined and Parallel Processor Design. http://public.
callutheran.edu/~reinhart/CSC521MSCS/Week5/FlynnTaxonomies.pdf (1996)

 14. Roodenrijs, E.: Testing on the cloud, A sogeti point of view on the potential of software testing
using cloud computing. http://www.sogeti.com/upload/COM/Curious%20about%20us/
Documents/PoV%20-%20A%20Sogeti%20Test%20Cloud_v1%200.pdf (2010)

 15. Williams, B.J., Carver, J.C.: Characterizing software architecture changes: an initial study. In:
ESEM 2007, pp. 410–419 http://www.google.co.in/url?sa=t&rct=j&q=characterizing%20
s o f t wa r e % 2 0 a r c h i t e c t u r e % 2 0 c h a n g e s % 3 A % 2 0 a n % 2 0 i n i t i a l % 2 0 s t u d y & s -
ource=web&cd=1&cad=rja&ved=0CC4QFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu
%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.123.6396%26rep%3Drep1%26type%3Dpdf
&ei=n3pJUbfSMY6zrAet64GYDQ&usg=AFQjCNHlS847JhguLPP23LfMh9Nonz1Fbw&bv
m=bv.44011176,d.bmk (2007)

4 Impact of Cloud Services on Software Development Life Cycle

http://www.ibm.com/developerworks/cloud/library/cl-jeecontainercloud/
http://www.ibm.com/developerworks/cloud/library/cl-jeecontainercloud/
http://www.amazon.com/Art-Enterprise-Information-Architecture-Systems-Based/dp/0137035713
http://www.amazon.com/Art-Enterprise-Information-Architecture-Systems-Based/dp/0137035713
http://www.techrepublic.com/whitepapers/cloud-networking-design-patterns-for-cloud-centric-application-environments/2393983
http://www.techrepublic.com/whitepapers/cloud-networking-design-patterns-for-cloud-centric-application-environments/2393983
http://assets1.csc.com/lef/downloads/LEFBriefing_TestingApplicationsCloud_021011.pdf
http://assets1.csc.com/lef/downloads/LEFBriefing_TestingApplicationsCloud_021011.pdf
http://public.callutheran.edu/~reinhart/CSC521MSCS/Week5/FlynnTaxonomies.pdf
http://public.callutheran.edu/~reinhart/CSC521MSCS/Week5/FlynnTaxonomies.pdf
http://www.sogeti.com/upload/COM/Curious%20about%20us/Documents/PoV%20-%20A%20Sogeti%20Test%20Cloud_v1%200.pdf
http://www.sogeti.com/upload/COM/Curious%20about%20us/Documents/PoV%20-%20A%20Sogeti%20Test%20Cloud_v1%200.pdf
http://www.google.co.in/url?sa=t%26rct=j%26q=characterizing%20software%20architecture%20changes%3A%20an%20initial%20study%26source=web%26cd=1%26cad=rja%26ved=0CC4QFjAA%26url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.123.6396%26rep%3Drep1%26type%3Dpdf%26ei=n3pJUbfSMY6zrAet64GYDQ%26usg=AFQjCNHlS847JhguLPP23LfMh9Nonz1Fbw%26bvm=bv.44011176,d.bmk
http://www.google.co.in/url?sa=t%26rct=j%26q=characterizing%20software%20architecture%20changes%3A%20an%20initial%20study%26source=web%26cd=1%26cad=rja%26ved=0CC4QFjAA%26url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.123.6396%26rep%3Drep1%26type%3Dpdf%26ei=n3pJUbfSMY6zrAet64GYDQ%26usg=AFQjCNHlS847JhguLPP23LfMh9Nonz1Fbw%26bvm=bv.44011176,d.bmk
http://www.google.co.in/url?sa=t%26rct=j%26q=characterizing%20software%20architecture%20changes%3A%20an%20initial%20study%26source=web%26cd=1%26cad=rja%26ved=0CC4QFjAA%26url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.123.6396%26rep%3Drep1%26type%3Dpdf%26ei=n3pJUbfSMY6zrAet64GYDQ%26usg=AFQjCNHlS847JhguLPP23LfMh9Nonz1Fbw%26bvm=bv.44011176,d.bmk
http://www.google.co.in/url?sa=t%26rct=j%26q=characterizing%20software%20architecture%20changes%3A%20an%20initial%20study%26source=web%26cd=1%26cad=rja%26ved=0CC4QFjAA%26url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.123.6396%26rep%3Drep1%26type%3Dpdf%26ei=n3pJUbfSMY6zrAet64GYDQ%26usg=AFQjCNHlS847JhguLPP23LfMh9Nonz1Fbw%26bvm=bv.44011176,d.bmk
http://www.google.co.in/url?sa=t%26rct=j%26q=characterizing%20software%20architecture%20changes%3A%20an%20initial%20study%26source=web%26cd=1%26cad=rja%26ved=0CC4QFjAA%26url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.123.6396%26rep%3Drep1%26type%3Dpdf%26ei=n3pJUbfSMY6zrAet64GYDQ%26usg=AFQjCNHlS847JhguLPP23LfMh9Nonz1Fbw%26bvm=bv.44011176,d.bmk
http://www.google.co.in/url?sa=t%26rct=j%26q=characterizing%20software%20architecture%20changes%3A%20an%20initial%20study%26source=web%26cd=1%26cad=rja%26ved=0CC4QFjAA%26url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.123.6396%26rep%3Drep1%26type%3Dpdf%26ei=n3pJUbfSMY6zrAet64GYDQ%26usg=AFQjCNHlS847JhguLPP23LfMh9Nonz1Fbw%26bvm=bv.44011176,d.bmk

101Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_5, © Springer-Verlag London 2013

 Abstract Information technology (IT) today has evolved into a rapidly changing
and dynamic science. Timelines have shrunk drastically for technology from being
termed cutting edge to becoming obsolete. In such a fast-changing and dynamic
world needing customised solutions, cloud computing offers a viable alternative.
Cloud can overcome the redundancy factor and evolve over time to suit user needs.
It is characterised by a wide array of deployment models and services that are very
promising. While the concept of cloud computing has been around for some time
now, industry adoption has been rather slow. Due to the sheer possibilities on offer,
one remains optimistic of wider acceptance of this technology in future. This chap-
ter takes us through the steps needed to validate the choice of public cloud via risk -
based feasibility analysis. The chosen option can be built into needed IT systems
based on cloud variants of the classic life cycle model. This chapter discusses the
phases and activities of this development. The Wrapper model discussed here will
enable better understanding of system control determinants for services opted on
the cloud. A case study is discussed to help provide a better insight and understand-
ing of the life cycle model.

 Keywords Software life cycle • Cloud provision • Wrapper model

5.1 Introduction

 Rapid adoption of the World Wide Web has brought a paradigm shift in business
computing. This transformation can be attributed to the robust client-server archi-
tecture of the Web and its request-response operation model. The days of using

 Chapter 5
 Cloud-Based Development Using Classic
Life Cycle Model

 Suchitra Ravi Balasubramanyam

 S.R. Balasubramanyam (*)
 Education and Research Unit, Infosys Limited ,
 No 350, Hebbal Electronics City, Hootagalli , Mysore 570027, India
 e-mail: suchitraravi_b@infosys.com

102

HTML only for information presentation are past. Web-based applications that
augment the computing capabilities using Java, XML and Web Services are the cur-
rent trend. Such Web-based applications provide both partial and complete business
solutions, with the user interfaces being accessible anytime online through the Web.
For any business, presence on the Internet implies availability of computing facilities
on demand.

 But there are costs involved for such anytime access. In addition to computa-
tional infrastructure, the software installation, confi guration and updates, along with
the operating system and upgrades, add to the costs. Involving third-party service
providers of such services helps reduce such costs, which cloud computing is best
suited for. Cloud offers fl exibility in software, platform and infrastructure on the
Web that are optimal for individual business needs. The pay-per-use model makes it
even more attractive to potential customers.

 Cloud computing evolved out of grid computing , which is a collection of dis-
tributed computers intended to provide computing power and storage on demand
[1]. Grid computing clubbed with virtualisation techniques help to achieve dynam-
ically scalable computing power, storage, platforms and services. In such an envi-
ronment, a distributed operating system that produces a single system appearance
for resources that exist and is available is solicited most [2]. In other words, one
can say that cloud computing is a specialised distributed computing paradigm.
Cloud differs with its on-demand abilities like scalable computing power – up or
down, service levels and dynamic confi guration of services (via approaches like
virtualisation). It offers resources and services in an abstract fashion that are
charged like any other utility, thus bringing in a utility business model for comput-
ing. Though virtualisation is not mandatory for cloud, its features like partitioning,
isolation and encapsulation [3] and benefi ts like reduced cost, relatively easy
administration, manageability and faster development [4] have made it an essential
technique for resource sharing. Virtualisation helps to abstract underlying raw
resources like computation, storage and network as one, or encapsulating multiple
application environments on one single set or multiple sets of raw resources.
Resources being both physical and virtual, distributed computing calls for dynamic
load balancing of resources for better utilisation and optimisation [5]. Like any
other traditional computing environment, a virtualised environment must be secure
and backed up for it to be a cost saving technique [3]. Cloud computing is a trans-
formation of computing by way of service orientation, distributed manageability
and economies of scale from virtualisation [3].

 The National Institute of Standards and Technology (NIST) defi nes cloud com-
puting [6] as “Cloud Computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of confi gurable computing resources
(e.g. networks, servers, storage, applications and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider inter-
action”. According to NIST [6], the essential characteristics of cloud computing
are on-demand self-service, broad network access, resource pooling, rapid elasticity
and measured service. We are seeing a paradigm shift in business IT due to these
characteristics .

S.R. Balasubramanyam

103

5.1.1 Cloud for Business

 The environment, the businesses operate in today, is increasingly getting complex,
with rapid changes in markets, products, customers and regulatory demands.
Growing businesses in these environments generate vast amounts of data for analy-
sis, which means scaling up of IT infrastructure adding up to huge business costs.

 Here, cloud offers a viable, sustainable and scalable alternative to businesses that
are both resource and cost-effective. Thus, managing business growth while control-
ling costs on IT infrastructure is perfectly balanced. For example, resource pooling
controls costs while addressing scalability. It also allows for mobility of operations,
helping control businesses spread across locations.

 With green technology and sustainable business practices gaining ground world-
wide, the pooled IT resources under cloud models have an added advantage for
businesses. It helps businesses signifi cantly reduce their carbon footprint as they
scale up.

 Businesses have a choice when deciding on cloud deployment – public , private ,
hybrid or community based. Public cloud is deployed on the Internet externally.
Private cloud resides on an intranet or private network, hybrid models are a combina-
tion of public and private cloud, while community cloud is shared by several organisa-
tions supporting a specifi c community . All the options offer software, platform and
infrastructure as services. Regardless of the type of cloud deployed, it impacts the
entire computational ecosystem. Be it a casual user, software developer, IT manager
or hardware manufacturer, all levels of participants experience the impact in varying
degrees [7]. The different cloud services, if chosen correctly, support business and its
IT needs. The NIST defi nitions of cloud services, their benefi ts and the limitations are
now given along with case scenarios to better understand their applicability.

 Software as a Service (SaaS) offers software with or without customisation and
allows changes only to the user-specifi c confi guration settings. NIST defi nition of
SaaS [6] is “The capability provided to the consumer is to use the provider’s applica-
tions running on a cloud infrastructure. The applications are accessible from various
client devices through either a thin client interface such as a web browser (e.g. web-
based e-mail) or a program interface. The consumer does not manage or control the
underlying cloud infrastructure including network, servers, operating systems, stor-
age, or even individual application capabilities, with the possible exception of limited
user-specifi c application confi guration settings”.

 Some examples of software offered on cloud are productivity applications like
word processor, spreadsheet, slide creators and image manipulators. Major enter-
prise applications like customer relationship management (CRM) are also part of
the cloud offerings. They are largely ready-to-use and users pay per use. Users can
access the software through a Web browser instead of installing them on individual
computers. Sometimes, software like CRM may require limited customisation but
still are very cost-effective tools. Benefi ts of SaaS include reduced cycle times to
market, anywhere access, no licence requirements and automatic version updates,
lower operating and maintenance costs and pay as you consume.

5 Cloud-Based Development Using Classic Life Cycle Model

104

 Platform as a Service (PaaS) offers environment to develop “cloud-ready”
applications and deploy them with required confi guration settings. The scalability
of the application at run time is administered by the service provider as per the
deployment settings. NIST defi nition [6] of PaaS is “The capability provided to the
consumer to deploy onto the cloud infrastructure consumer created or acquired
applications created using programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating systems, or storage, but
has control over the deployed applications and possibly confi guration settings for
the application hosting environment”.

 Enterprise applications need an enabling technology termed as platform (also
called application infrastructure or middleware). Operating systems, application
servers, databases, business process management (BPM) tools and application
integrators are a few examples. Platform services like Google App Engine provide
run time environments for Java and Python Web applications. Once deployed, scal-
ing up the application to handle increased traffi c and enhance data storage will be
handled by the service provider. Heroku, another cloud platform built on an open
standard, is a polyglot. It supports several languages like Java and Ruby, multiple
frameworks and databases. Other facilities on offer include HTTP caching, logging,
memcache and instant scaling.

 The above platforms are examples of ready-to-use, on demand services where
the user is charged a fee depending on the computational infrastructure used. In
many cases, the application development, testing and deployment are constrained
by the platform provider specifi cations, application programming interfaces (API),
among other parameters. However, platform services that leverage existing skill
sets of developers are more appealing to customers. While recommending PaaS
offerings, Gartner Analyst Yefi m Natis [8] says “PaaS is still emerging. It is neither
mature nor standardised”. Among the positives, PaaS has the benefi ts of inherent
dynamic scaling and perfect bundled environment for development, testing and
production.

 Infrastructure as a Service (IaaS) offers hardware like servers, processors and
memory obtained on rental. The user has control over the rented resources, confi g-
ure any operating system on them, install any software and host or run any applica-
tion on them. NIST defi nition [6] of IaaS is “The capability provided to the consumer
to provision processing, storage, network, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software, which
can include operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating systems,
storage, and deployed applications; and possibly limited control of select network-
ing components (e.g. host fi rewalls)”.

 In the case of start-up enterprises, short-term business campaigns and seasonal
businesses, investing on data storage centre may not be the right strategic choice.
So would the case be with businesses needing growing infrastructure. In such
conditions, outsourcing the building and maintenance of data centre appears more

S.R. Balasubramanyam

105

prudent. With an IaaS service, it is possible to reduce costs, space and management
overheads. At the same time, the user can avail on-demand computing capability.
Currently, infrastructure services are chosen mostly for non-critical applications.
Principal Research Analyst Kyle Hilgendorf at Gartner states in his article titled
“Evaluation Criteria for Public Cloud IaaS Providers” [8] that “IaaS is at the cross-
roads. To host mission critical business applications, IaaS should offer capabilities
that convince the user, and it is yet to mature in this direction”. However, key ben-
efi ts include effective utilisation of infrastructure, resource provision on demand
and reduced operating costs.

 The key benefi ts of cloud services can be broadly summarised as enhanced busi-
ness mobility, operating cost reduction, agility, fl exibility and enabling green IT.
However, key challenges still remain on cloud. These include among others security ,
data privacy, compliance and absence of standards, performance and availability
issues. With these limiting factors, businesses need to make certain compromises
when choosing cloud services. A risk analysis-based approach to decision making on
availing cloud services will be of immense help, and the methodology is detailed in
the following section.

5.2 Cloud-Based Development

5.2.1 Risk-Based Approach for Feasibility Analysis

 The current business environment is characterised by only two constants – change
and uncertainty. Business applications need to be agile to adapt to such fl uidity, but
constant changes to software and IT infrastructure is expensive. It is here that the
characteristics and capabilities of the cloud, like the distributed model, high net-
work availability and scalability can enable large Web-based applications to cope
with constantly changing business demands. For businesses to select a cloud-based
deployment, it is these benefi ts that are the decisive factors.

 But, challenges like security , data privacy, regulatory issues and compliance are
among the road blocks. The critical factor is security , as the user has no ownership
or control over the cloud [3]. A related issue is the integrity of information in the
hands of a third party, with current international laws and regulations governing
such data misuse hazy. Other issues like governmental enforcement of IT laws and
regulations, vendor lock-in that prevent federation of services from different provid-
ers, performance consistency and scalability also impact user decisions.

 All stakeholders need to relook at all these issues holistically for wider and
faster adoption of cloud services. One way to enhance user trust could be to con-
sider international protocols and standards available, to certify cloud applications
and Internet security . Certifi cation is a proven technique to help establish identity
and trust. Establishing trust is critical for cloud applications as the boundaries are

5 Cloud-Based Development Using Classic Life Cycle Model

106

more logical than physical. In the virtual world, access policies and privileges need
to change dynamically depending on the user and workload [9]. Further, user loca-
tion and device used to access the service are equally important. Standards will
allow consistency, portability and interoperability [10]. However, expecting inter-
national standards to govern cloud security is quite impossible as of now. Among
existing standards, some of them – federated identity across multiple systems and
providers, interoperability between different services and context-based protec-
tion – would be appropriate, based on the nature of request, data criticality and risk
profi le of service provider. Establishing a federated credential management system
involves a repository of heterogeneous credentials, transfer and translation of those
credentials [11].

 Businesses need to consider the following factors when decisions are made to
move to cloud-based services:

• What data and applications to move to the cloud
• The services that are needed on cloud, based on gathered business requirements
• The risks of service provider integrity, security breach and privacy violations

 Presently, there is no single international standard or specifi cation existing that
guarantees safeguards to cloud applications and protection against these risks.
Service providers can enhance user trust by integrating with currently available
international certifi cations and standards. These steps in combination with the fol-
lowing suggested best practices [12] establish a three-step approach for feasibility
analysis. This approach inherently suggests how to choose service providers and the
right cloud services.

 Step 1: Conduct risk assessment – to minimise risks, assess and choose service
providers based on parameters like interoperability, portability and legal compli-
ance. Assess the providers risk profi le, ecosystem, supply chain and the quality of
their infrastructure and operations.

 Step 2: Assessment of one’s own security capability in a cloud environment – in
any cloud environment, the higher the support from a provider, the narrower the
scope and control for the consumer. From SaaS to IaaS , responsibility for security
varies for the consumer from least to highest. This increases fl exibility for the con-
sumer in implementing security controls. Data and users’ interactions with the sys-
tem can be controlled by encryption, authentication and secure access points. These
are achievable irrespective of service provider.

 Step 3: Implementation of a governance network – consumers should ensure
from the providers logging of event observation and notifi cations. User should opt
for remote monitoring where possible. Contracts and SLAs help establish a robust
governance framework [10].

 This three-step approach will help potential users evaluate and adopt cloud,
capitalise on emerging technologies and be a part of evolving cloud standards.
Any cloud-based development must ensure such analysis as part of overall require-
ments gathering. Next, software system life cycle is presented before exploring
classic life cycle model to help better understand cloud in the development
context.

S.R. Balasubramanyam

107

5.2.2 Software System Life Cycle

 Information systems help organisation to capture and manage data to produce
information useful for its employees, customers, partners and suppliers. Each infor-
mation system has a life of its own. Engineering such a software system involves
process, methods and tools that facilitate systematic, disciplined and quantifi able
approach to the overall software development. Process is the foundation layer and
comprises a framework of activities to be carried out regardless of domain, size and
complexity, methods indicate how-to of each activity and tools support process
and methods. The generic process framework for software engineering comprises
communication phase, planning phase, modelling phase, construction phase and
deployment phase . Typical set of activities carried out in each of these phases are
listed below [13]:

• Communication phase: Requirements gathering, focus on what requirements,
specify the requirements and project initiation.

• Planning phase: Prepare project schedule, estimate of efforts and task duration.
Tracking of the schedule happens in parallel with the rest of the subsequent phases.

• Modelling phase: Contains analysis phase and design phase. Activities of analysis
phase are model the requirements, build prototype and evaluate alternate options.
Similarly design phase activities are translate the requirements into a blueprint
for software construction and iterate to a fi ne grain level details needed for the
coding.

• Construction phase: Construct the code, in other words implement the design,
test unit wise, after code integration and fi nally the system.

• Deployment phase: Deliver, support and maintain the deployed software.

5.2.3 Classic Life Cycle Model

 The classic life cycle model is also called waterfall model. In this model, the work-
fl ow is linear in nature from communication phase to deployment phase and the
outputs of each phase act as inputs for the next phase . It is a theoretical and sequen-
tial model, not adaptable directly. But other process models in use today are basi-
cally iterative in nature, which is more practical. Customer requirements evolve
over time resulting in extension of life cycle phases. In particular, the design phase
needs to evolve to be in line with these requirements [14]. However, in an ideal
scenario the classic model is the simplest to understand and implement and so is
used as the reference model in this chapter.

 The life cycle of a cloud-based development is discussed by referring to this
model. However, different services of cloud result in variants of this model, which
are discussed in subsequent sections. Before exploring the variants, it is to be noted
that system controls vary depending on the service and is depicted in the Wrapper
model that follows.

5 Cloud-Based Development Using Classic Life Cycle Model

108

5.2.4 Cloud Services Wrapper Model

 Consider any application software being used. The software needs a platform, which
is resident on suitable infrastructure. The functional aspects of the application are
dealt with at the software level, with the non-functional aspects spread beyond,
reaching up to infrastructure including the platform. Cloud services follow the same
pattern. SaaS is existent because it wraps a PaaS , which further wraps an IaaS . At
each service level of the cloud, the non-functional facets are dependent on the under-
lying support. The scope of controls that can be exercised follows the same path and
varies from low to high from outermost wrap to innermost. This wrapping of services
can be shown as an abstract Wrapper model, represented as in Fig. 5.1 . This model
would help understand the variants of the classic life cycle phases better.

 The model shows an IaaS wrapped inside a PaaS that in turn is wrapped inside
SaaS. SaaS alone cannot exist without PaaS; similar is the case with PaaS. It is evi-
dent from the fi gure that IaaS and PaaS are hidden inside SaaS, and SaaS gets it
support from PaaS which in turn depends on IaaS. Just dealing with outer wraps
ignoring the inner ones will not help understand cloud relationships holistically.

5.2.5 Variants of Classic Life Cycle Model

 The discussion in this section is based on the premise that software development is
an outsourced activity and is for the public cloud. We also need to understand the
relationships between the various stakeholders on the cloud. Given under Fig. 5.2 is
the relationship between the customer, service provider and solutions provider in
the cloud paradigm.

 This model depicts the triangular relationship among Cloud Customer, Cloud
Solutions Provider and Cloud Service Provider. The smaller triangles indicate the
purpose of interaction between these stakeholders, like the customer interactions
with solutions provider are for their IT needs. The Solutions provider offers solution
catering to those needs by developing applications for the service provider’s cloud.
Now the service provider offers customised services to the customer on its cloud.

 The customer needs a cloud-based IT system, which is developed by the solu-
tions provider and deployed on the service providers cloud. The solutions provider
may or may not utilise the public cloud for development and testing of the solution.

 Fig. 5.1 Wrapper model

S.R. Balasubramanyam

109

The focus here is only on the life cycle from the solution providers’ perspective.
It is assumed that the system may use any one, all or a combination of cloud ser-
vices. In all the cases, the emphasis is only on the system under development and
the activities are mentioned accordingly.

 Following are the activities of cloud-based development with reference to classic
life cycle model. There are generic activities involved in each of the phases, as well
as different activities for each of the cloud services. Table 5.1 gives a general listing
of activities irrespective of cloud services. Tables 5.2 , 5.3 , 5.4 , 5.5 and 5.6 sum up
phase-wise activities for SaaS , PaaS and IaaS .

 The table highlights the common activities that are exclusively carried out for
cloud-based development.

 One of the important activities of the communication phase is requirements
gathering and analysis. For large systems, requirements analysis is the most diffi -
cult and uncompromising activity [15]. Whether the system to be built is small or
big, there are cases where the requirements have to be visualised and produced.
With cloud this becomes more challenging as the choice of the cloud service pro-
vider should be made foreseeing the needs of other phases. For the two kinds of
requirements – namely, user requirements and a high-level abstraction and system
requirements – all relevant details have to be gathered. The requirements of the
system further fall under functional, non-functional and domain-related categories.
Requirements tell what the system should do and defi ne constraints on its opera-
tion and implementation [16]. It gives a lead to choose service providers.

 Selecting a suitable service provider is very much infl uenced by the feasibility
analysis for the cloud adoption. This is a critical step as no industry standards exist
as of today for choosing service providers’ services. This step involves having an
architectural description that gives a high-level view of the system, its structure,
software elements and relationship among them [15]. Typically descriptions should
cover the business domain, applications integration, technology, data and informa-
tion architecture [14]. Due to lack of standards for cloud-architecture evaluation, the
proposed architecture against non-functional quality attributes may not give a right
evaluation result. A possible alternative is to follow Web Application Architecture
Framework (WAAF) proposed by author David Lowe that categorises the architec-
ture into Structure (what), Behaviour (how), Location (where) and Pattern (in Web
applications) [17]. Apart from requirements specifi cation document that contains
precisely stated requirements, architecture description is also produced as an output.

C
us

to
m

er Solutions Provider

Service Provider

Develop for CloudSa
aS

, P
aa

S,
 la

aS

IT Needs

CLOUD

 Fig. 5.2 Cloud stakeholders
relationship

5 Cloud-Based Development Using Classic Life Cycle Model

110

In the requirements, barring functional requirements, performance and external
interface requirements, design constraints are heavily dependent on the cloud ser-
vice and the respective provider for the same. This phase gives way to the next
phases by a formal project initiation activity.

 Planning phase [15] requires both requirements specifi cation and architecture
description as inputs for coming up with an executable plan. A plan for the processes
to be followed for the entire project needs to be formulated. Based on this, the project
schedule includes activities, their timelines and milestones to cross. Estimates of
effort and resources can be done by taking expert opinion or through the use of mod-
els. As very little expertise exists in the industry today, and models are more suited
for traditional development efforts, estimation is a challenging task. A good estima-
tion has as its ingredients – scope of activity being estimated, work environment and
usage of tools [18]. One needs to look at increasing the productivity which is an
added result of environment, tools and experience. A heuristic approach along with
both of the above could be a better option. Quality and confi guration management

 Table 5.1 Classic life cycle model for cloud: common activities

 Classic life cycle model for cloud

 Phase Activities common to all services i.e., SaaS, PaaS and IaaS

 Communication Requirements gathering
 WHAT and not HOW of requirements
 Requirements specifi cation
 a Cloud adoption decision – taken based on risk based feasibility analysis
 a As there are few players in cloud computing arena, choose service

provider in line with needs of future phases. This is critical as
presently industry standards do not exist

 Project initiation
 Planning Project schedule

 Estimation of efforts and task duration
 Tracking the activities – happens parallelly in all phases

 Modelling ANALYSIS:
 Model requirements
 Build prototype
 Evaluate alternate options
 a Consider and incorporate non-functional and infrastructure require-

ments while modelling. Traditionally this is delayed until designing
 DESIGN:
 Translate requirements into software construction blue print, iterate up to

fi ne grain
 a Include design goals of traditional web applications (irrespective of

domain, size and complexity) for end-user interfaces
 Construction Code and Test

 a Testing to happen in a simulated or real cloud environment; hence testing
to be planned accordingly

 Deployment Deliver
 Support and maintain the deployed software

 a Activity applied for cloud-based development

S.R. Balasubramanyam

111

 Table 5.2 Classic life cycle model: communication phase in cloud services

 Phase Services

 Communication SaaS
 Software is by third party provider. Important to choose appropriate

service provider
 Along with domain specifi c standard requirements, customization as

applicable are specifi ed
 Software service may need customization as per feasibility analysis
 PaaS
 Application is to be custom built, so will be the requirements gathered
 However platform and infrastructure are by third party provider; choose

appropriate provider
 Platform service to satisfy non-functional requirements as per feasibility

analysis
 IaaS
 Application and platform as per customer needs, only computing

environment by third party provider; customer virtually owns
infrastructure

 Choose appropriate provider
 Infrastructure confi guration is customized and utilization is charged

accordingly
 Infrastructure service to satisfy non-functional requirements like

traditionally owned infrastructure with focus on security, legal
compliance and proper governance

 Table 5.3 Classic life cycle model: planning phase in cloud services

 Phase Services

 Planning SaaS : Plan for software service customization
 PaaS : Plan for application development for the cloud platform and deployment

on that platform
 IaaS: Plan for application development, deployment on specifi ed platform

and on the cloud infrastructure

plans are to be made ready. Risk management is managing of the unknown risks in
the cloud development arena. To assess a project situation, use a carefully crafted
monitoring plan to track activities across the development phases. This helps in com-
paring actual performance against the plan, and thereby ensuring the right actions at
the right time to achieve the project goals. The output is a detailed plan based on
these efforts and resources estimation and anticipated risks.

 Modelling phase is split into analysis and design phase. Though the high-level
architecture is available by now, it is of utmost importance to determine whether the
suggested strategy deals with client’s constraints. The obvious approach is proto-
typing [19]. Modular decomposition of modules is performed and prototypes con-
structed for chosen signifi cant modules. Alternate options are explored, if needed
using appropriate techniques to do the analysis. Consideration of non- functional
requirements and infrastructure requirements during analysis is a critical step. For a

5 Cloud-Based Development Using Classic Life Cycle Model

112

 Table 5.4 Classic life cycle model: modelling phase in cloud services

 Phase Services

 Modelling ANALYSIS
 SaaS
 Based on requirements + customization specifi cations, identify the necessary

custom interfaces for software service
 PaaS
 Based on requirements choose suitable application design architecture
 Devise deployment architecture considering the platform of the provider
 IaaS
 Based on requirements choose suitable applications design and deployment

architecture
 Devise the confi guration set up of the necessary infrastructure based on the

offerings of the provider
 DISIGN
 SaaS: Design the identifi ed interfaces as part of necessary customization
 PaaS and IaaS:
 Based on the architecture design interfaces that are internal as well as external

to application
 Design software components as per the requirements model i.e., structured

analysis model or object-oriented analysis model or both

 Table 5.5 Classic life cycle model: construction phase in cloud services

 Phase Services

 Construction SaaS
 Code as per customization needed for the software
 Focus on regression testing of software as frills are added in the name

of customization
 PaaS
 Code and Test as per design specifi ed
 Focus on performance testing as non-functional requirements like scalability,

availability etc. of web application are essential
 IaaS
 Code and Test as per design specifi ed
 Focus on recovery testing and failover testing as recovery and failover are

essential non-functional requirements. Testing becomes more signifi cant
as infrastructure is owned virtually and no physical control on them

public cloud as total infrastructure is owned by a third party, this analysis decides
the success of the subsequent phases. Detailed design of the system is carved out to
the level of individual methods and their interfaces for all the modules. As the appli-
cation would run on distributed, heterogeneous, virtual computers on the Web, fol-
lowing Web engineering approach helps in successful Web-based system [20]. Web
requirements like uniform look and feel, up-to-date, navigability and more have to
be fulfi lled within the design. For Internet-based applications, additional challenges
are scalability and load balancing [20]. In an open environment like the Internet, it
is not so easy to understand and predict the workload and user profi les. An unbal-
anced workload can become a cause for reduced system performance, reliability

S.R. Balasubramanyam

113

and availability. A gap analysis of scalability and load balancing offerings from the
provider would help in properly confi guring those parameters, anything additional
required must be built in-house through solutions provider.

 The major concern in construction phase is vendor lock-in. Hence, the focus
should be on writing interoperable, portable applications for the cloud. Applications
need to be as fl exible as possible and open for changes. This would in turn facilitate
the maintenance phase.

 Deployment phase is to deliver, deploy, support and maintain the cloud applica-
tion. Stephen Schach mentions in his book [19] that maintainability should be built
into the system from the beginning and not compromised any time during develop-
ment. Like for any product, maintenance is like after sales service for an applica-
tion; in case of cloud this is to be taken care of by all providers involved. Establishing
a shared maintenance service, switching or replacing service providers are the key
complex challenges faced in this phase.

 Communication Phase: Apart from the common activities, choice of service
provider is most important for SaaS . Unlike other digital products, plug-and-play
is not the case with cloud product/software. Hence, it is also essential to specify the
required customisations and describe architecture to suit the current needs with a
provision to accommodate future requirements. With PaaS , it is the platform that
runs on third-party-owned infrastructure that needs to be confi gured and custom-
ised. Application to be built by the solutions provider follows the life cycle of a
typical Web application. While choosing the PaaS service providers, bear in mind
the non-functional requirements. In case of IaaS , except for the infrastructure, the
rest of the Web application cycle is similar to that of typical Web applications. The
virtual infrastructure made available as a service is charged based on confi guration
and utilisation. PaaS and SaaS utilisation will be charged inclusive of the charges
for the wrapped services as well. Refer to Fig. 5.1 to know what and how services
are wrapped. Along with the other non-functional requirements security, legal

 Table 5.6 Classic life cycle model: deployment phase in cloud services

 Phase Services

 Deployment SaaS
 Deploy as per the confi guration guidelines given by the provider
 Support and maintenance in line with the provider’s software maintenance

strategy
 PaaS
 Deploy like traditional application onto the provider’s platform with confi gu-

ration setting suggested by the provider
 Support and maintenance depends on the platform support by the provider
 IaaS
 Deploy like traditional application except that infrastructure is virtually owned
 Confi gure for cloud parameters like resource requirements, bounds for

elasticity, dynamic provisioning, details for billing and metering etc.
 Support and maintenance happens as with traditional applications, depends

maintenance strategy adopted by the provider for the virtual machines

5 Cloud-Based Development Using Classic Life Cycle Model

114

compliance and proper governance are to be looked at without fail while choosing
the service providers for all cloud services. Here, the Wrapper model can help in
visualising the control that can be exercised by the customer in getting the non-
functional requirements satisfi ed. Outer layers indicate lesser control, while inner
layers can lend themselves to better control.

 Planning Phase: When compared with a typical Web application that can go
along with classic life cycle, the cloud services have variations as per architecture
description given below. Accordingly the needed service, application or interface
integration should be made part of the plan.

• SaaS – plan for the required customisation for the cloud software
• PaaS – plan for application development for cloud platform and deployment on it
• IaaS – plan for application development and deployment on specifi ed platform

and on the cloud infrastructure

 Modelling Phase: After planning comes the modelling and designing of the sys-
tem based on the project requirements. If prototypes are to be built, they are to be
analysed and best one chosen. With SaaS , the customisation demands the necessary
interfaces to be analysed and designed. In PaaS and IaaS, the application is modelled
like any other web application; the deployment architecture is analysed, the internal
and external interfaces are designed keeping in mind the platform and infrastructure
offerings of the providers.

 Construction Phase: For each service, code is written in line with the design.
Focus during testing varies in services. Security testing needs to be done compulso-
rily. Control in SaaS needs regression testing as frills are added as part of customisa-
tion. PaaS would need performance testing on the parameters like scalability and
availability, as infrastructure is virtual. In IaaS, recovery and failover have to be
tested since physical resources are in the hands of third party.

 Deployment Phase: SaaS deployment is based on service provider guidelines.
Support and maintenance will be controlled by the provider. Depending on the sup-
port and maintenance strategy of the provider, the phase can be smooth or a roller
coaster ride. In PaaS application, deployment happens on the providers’ platform
confi gured as per their guidelines. Support and maintenance is a shared responsibil-
ity between the solutions provider and the service provider. Cloud application aspect
is dealt by solutions provider and that of platform is with service provider. With
IaaS , the deployment activity involves the infrastructure specifi cation in the form of
confi guration parameters like number of resources needed, namely, processor, oper-
ating system, storage capacity, bounds of elasticity, dynamic provisioning, monitor-
ing and metering. Again support and maintenance is a shared responsibility,
infrastructure onus is with service provider whereas platform and the application is
with the solutions provider.

 The complexity of any cloud project is mainly in requirements analysis and map-
ping those to the capabilities of the cloud environment. The emphasis is mainly
on communication , planning and modelling phases of the life cycle. Compared to

S.R. Balasubramanyam

115

traditional development efforts, cloud-based development efforts and costs are
lower in the construction phase. The activities listed above make it clear that cloud
computing activities need tailored approach to classic life cycle model, especially
for deployment and technology architecture . Lack of standards has made cloud-
based developments highly platform- and vendor-specifi c projects. Hence, a high
adaptability model is recommended for solution implementation. Other process
models possible for cloud have been briefl y explored in the next section.

5.2.6 Other Process Models

 Process models that are suitable for cloud projects are basically iterative in nature.
An incremental model can help in managing the technical risks by way of planned
increments to the application. This approach is in general combined with other
approaches for realising the application in quick time.

 Prototyping is an iterative model wherein core requirements are realised quickly,
thereby reducing the time to market. It is a mechanism to defi ne requirements in an
iterative manner till requirements are clearly understood and frozen. By itself pro-
totyping is not a cost-effective model for large-scale complex applications. However,
it is best applied in the context of other process models .

 Spiral model is the best of waterfall and prototyping models. It imbibes the sys-
tematic aspect of waterfall and iterative aspect of prototyping. It is a risk -driven
process model and reduces the degree of risk through iterations [21]. Though it is
suitable for large-scale systems and software, it is not a convincing model for cloud
projects at this stage. This is because of lack of standards and lack of expertise in the
industry on cloud risks assessment.

 Unifi ed process which is driven by use-cases and centred around architecture is
incremental and iterative; hence suitable for object-oriented projects. In the cloud
the dynamic provision of resources and application components is inherently object
oriented. This aspect of cloud can be best utilised by the model in combination with
other process models [21] .

 As indicated earlier in the feasibility analysis section, cloud can adapt to chang-
ing business needs. One development approach that accommodates changes is the
agile methodology. Some of the process models based on this methodology are
Extreme Programming (XP) and SCRUM. Adaptability is the basic principle of
these models. They focus on satisfying the customer’s requirements as of today
with a provision for long-term requirements. In this methodology, system is built
over multiple releases by constantly responding and implementing requirements.
It is a harmonious collaboration between customer and solutions provider teams for
a sustainable application development. It includes improved communication among
the working teams and thereby results in faster deployment.

5 Cloud-Based Development Using Classic Life Cycle Model

116

5.3 Case Study

 The industry service providers under the cloud platforms have many success stories.
The underlying factor in most of these successes is hybrid cloud. This is considered
the right choice for IT systems needing Web hosting, content delivery, e-commerce,
backup and storage. NIST defi nition [6] of Hybrid Cloud is “the cloud infrastructure
is a composite of two or more distinct cloud infrastructures (private , community or
public) that remain unique entities, but are bound together by standardized or pro-
prietary technology that enables data and application portability (e.g. cloud bursting
for load balancing between clouds)”. Only non-critical businesses, start-ups and
one-off Web presence cases choose public cloud. The Web sites of some service
providers like Amazon [22], IBM [23] and Google [24] have case studies for cloud
that can be referred. A case study presented here helps understand usage of the pro-
posed classic life cycle model.

5.3.1 Background Scenario

 Back to Basics (B2B) is a not-for-profi t organisation, with the stated goal of provid-
ing free education covering all age groups, through content delivered online through
the Internet. The organisation has an online learning portal hosted within their coun-
try. To realise their stated goal of reaching out to all learners across the globe, they
now want to re-establish themselves on the Web. The founding members of the
organisation are determined to realise their stated goal and ensure the success of this
online learning program. To cater to the needs of non-English-speaking countries,
the organisation is planning to create video lessons in different languages and is also
trying to subtitle present content videos wherever possible. As the demand for video
lessons are increasing by the day, they also need to ensure portal availability 24 × 7
for the global audience. They also have plans to Webcast (live or recorded) impor-
tant education conferences especially for university learners. All these plans call for
huge infrastructure outlay.

 Presently, the site offers lessons in basic science and mathematics. These are video
lessons of short duration of 5–8 min. Every learning video hosted on the site goes
through a process workfl ow. Apart from aspiring learners, there are other site users
like administrator, editors, authors and reviewers.

 The authors and reviewers are a large community of volunteers who contribute
to the video lessons bank periodically. The site administrator oversees the need for
innovations, simplicity of content and additional practice assignments. He posts
artefact generation requirements to the author community after a careful scrutiny of
reports. These reports are generated based on the video ratings, assessment of scores
of learners and frequency of downloads of a particular artefact.

 Whenever there is a post on artefact generation requirement, interested authors
can nominate themselves along with a story board for the subject. This is reviewed

S.R. Balasubramanyam

117

and approved by the administrator in consultation with the editor-in-chief. Once
approved, the administrator charts a schedule and updates are sent to the selected
author (if there are many nominations for a particular artefact) and a corresponding
reviewer is assigned. Designated authors produce the videos and upload it onto the
site for review. In the fi rst instance when the video is uploaded, both the administra-
tor and assigned reviewer receive e-mail alerts. From now, the review activity
between author and reviewer happens on the network, till fi nal reviewer approval.
The fi nal call for any improvements or full rejection rests with the editor-in-chief,
who is the designated authority to sign off the video for both the story board and
hosting. As per set standards, the editor-in-chief awards credit points to both author
and reviewer, based on the popularity and usefulness of the video. This ensures
special recognition of the volunteers’ contribution, a source of satisfaction for them.

 Learners can download the video lessons of their subjects and topics of interest,
practice assignments and take up assessment tests. The assessment scores are
recorded for later analysis. The learners need to rate the videos on different param-
eters like simplicity of presentation, narrative style, topic coverage, innovative
examples and suffi ciency of time for a topic. Learners can also provide feedback for
any improvements.

 For this mammoth mission, the organisation does not want to invest on large
CAPEX (capital expenditure), preferring moving to OPEX (operational expenditure)
and wants to utilise the available funds more thoughtfully. So they are exploring a
viable, cost-effective and scalable solution and have discussed their requirements with
a solutions provider. The following section details how the solution was arrived at.

5.3.2 Classic Life Cycle Model: Application

 The organisation has started the communication phase with the selected solution
provider. Risk-based analysis is carried out along with other activities in this phase,
and public cloud is chosen. As the project security is not critical, the whole system
resides on public cloud. The solution offered is not just limited to a Web application
and its associated database but comprises additional features like e-mail services,
calendar service and video production workfl ow. The video hosting and video
streaming are part of content delivery network (CDN) aimed to serve a global audi-
ence of learners. The storage needs to be scalable to meet growing future demand.
The main drivers for choosing cloud for solution implementation are:

• To spend on OPEX rather than CAPEX
• Affordable and scalable storage
• Access mobility for end users
• Users resident across the globe
• Anytime availability and elasticity
• Non-critical application
• Needs collaboration

5 Cloud-Based Development Using Classic Life Cycle Model

118

 Ensuring privacy is important, as log reports, Web access reports, location, country-
or continent- wise assessment reports need to be secure due to legality issues. This
needs to be incorporated carefully in the contract being entered into with the service
provider. It is assumed that this requirement is fully met in the contract signed
between customer and service provider. The other option is to hold such critical data
on premises, and opt for hybrid cloud covering the rest of the application. We pro-
ceed next to the three-step approach for feasibility analysis.

• Step 1: Assess risk involved especially with the breach of legal compliance.
Study the risk profi le of service provider under consideration. Get assured on the
quality of their infrastructure and operations.

• Step 2: Assess own security capabilities. Opt to encrypt data that gets onto the
cloud, else it may lead to legal risks. (Here it is assumed that the organisation opts
for encryption and contract with service provider is entered into accordingly.)

• Step 3: Establish a governance framework to monitor the events real time, as
application is targeted at a global audience. (Here it is assumed that the organisa-
tion wants to delay having a monitoring system.)

 Life cycle phases follow the project initiation. Table 5.7 gives details of the
phases involved. The architecture diagram along with explanation given helps
understand how to choose the right cloud service as well as service provider.

 In the communication phase, solutions provider selects the right service provider
for the proposed high-level architecture (Fig. 5.3). As all of software, platform and
infrastructure services are chosen, project schedule and plan are prepared to be run
in tandem till the necessary integration points are reached. During the modelling
phase, the modules and interfaces are defi ned; however, prototypes on integration
interfaces have to be built and analysed, based on which other alternate interfaces
are explored. Especially for the cloud integrator supposed to integrate SaaS, PaaS
and IaaS, prototyping is required. One more prototyping needed is to understand the
browser compatibility and limitations. With satisfactory prototyping, the high-level
architecture is now frozen for designing.

 Design phase details out the modules and interaction interfaces with other
modules. This being a Web-based system, the attributes like usability, navigabil-
ity, response time, interaction effi ciency, localisation, mobility, accessibility, con-
sistency and compatibility are part of the user interface design goals [25]. Since
the solution provider has chosen cloud itself for the development of the system,
testing happens in the public cloud environment that becomes a facilitator for this
testing activity. Support and maintenance responsibility would be shared among
the providers, and accomplishing this federated activity is with the solution
provider. For detailed activities in each of the phases, refer to the explanations in
Tables 5.2 , 5.3 , 5.4 , 5.5 and 5.6 .

 Architecture : The system comprises an end-user interfacing application for
accessing the video lessons, connected database for data storage, reports and exclu-
sive video storage. Other functions like e-mail, calendar, video production work-
fl ow and content delivery network (video hosting, video streaming) are equally
essential for a fully operational system. All these services have to be seamlessly
integrated on the cloud. Figure 5.3 depicts a high-level architecture diagram.

S.R. Balasubramanyam

119

 The diagram depicts that to produce online content, the authors and reviewers
community fi rst need a collaboration medium, which also needs to be provided to
the administrator and editor-in-chief. The medium is primarily for communication
and planning, e-mail and calendar services. The video creation workfl ow needs a
platform service where all stakeholders interact on work allocation, subsequent
submission of the allocated work, followed by the work approval within the defi ned
fl ow. Saving of the intermediate outcomes and fi nal artefacts of video creation
workfl ow requires for growing storage that can only be offered through infrastruc-
ture service. The videos approved are hosted on the provided storage. This huge
content residing on the storage is meant for delivery via video streaming. Here a
software service that offers content distribution and streaming is a must. A key need
for enthusiastic learners is a Web interface that is a one-stop shop for them to access
and download the video lessons, practice assignments and take up assessment tests.
This Web application is built in Java and hosted on a Web server platform service.
Apart from this, learners’ data needs to be saved in a structured fashion for future
reports generation and subsequent analysis. This calls for a relational database
platform. Now with multiple services and providers in the arena, a suitable integrator

 Table 5.7 Classic life cycle model for case study

 Back to basics – case study

 Phase Activities carried out

 Communication Gather requirements, Specify requirements
 Choose services – email services, calendar service as SaaS video

production work-fl ow as PaaS, Main Web Application and its database
as PaaS, content delivery network as SaaS and storage as IaaS. A
cloud integrator to integrate all these

 Choose the service providers – Amazon, IBM, We Video, Google Apps
 Initiate project
 Service specifi c activities carried out; refer Table 5.2

 Planning Schedule is ready along with estimation
 Service specifi c activities carried out

 Modelling ANALYSIS
Model the requirements
 Build prototype as necessary, and evaluate alternates
 High level architecture is decided
 Service specifi c activities carried out; refer Table 5.4
 DISIGN
Translate requirements to software blueprint with detailed designing
 As it is a web-based application, the design goals like usability, naviga-

bility, simplicity, consistency, compatibility etc.
 Service specifi c activities carried out; refer Table 5.4

 Construction Code and Test as per design
 Testing happens in real cloud environment as solution provider uses cloud

for development
 Service specifi c activities carried out; refer Table 5.5

 Deployment Deliver i.e., deploy application live
 Support
 Service specifi c activities carried out; refer Table 5.6

5 Cloud-Based Development Using Classic Life Cycle Model

120

that integrates them effortlessly is vital for the success of the system. The choice of
providers and their services for the above functions are mentioned in the following
section. The impact of the differences using life cycle model for SaaS , PaaS and
IaaS is highlighted in conclusion.

• IBM WebSphere Application server [23] that is chosen for hosting the main Web
application is a PaaS service. It is opted to achieve the necessary interoperability
of different services. The relational database is again a PaaS service, and Amazon
RDS for MySQL [22] is chosen for the same.

• The interaction among the users other than learners happens through e-mails and
calendars for work scheduling. This implies need for a system that offers col-
laboration and mobility. Google Apps e-mail and calendar SaaS services [24] are
selected for this.

• WeVideo [26], a cloud-based, collaborative video-editing platform, best fi ts the
video creation workfl ow. The kinds of users, their activities and the complete
workfl ow are catered to by this PaaS . The next functionality is to host and dis-
tribute the video content. WeVideo also has an option to export baseline videos
to a hosting and distribution environment.

Video (download / streaming)

IBM WebSphere
CastIron

Email, Calendar
Services

Google Apps

SaaS
SaaS

PaaS

IaaS

Storage
Amazon S3

Video
Video workflow

WeVideo Platform

Application
Server

IBM WebSphere

C
l
o
u
d

I
n
t
e
g
r
a
t
o
r

V
i
d
e
o

h
o
s
t
i
n
g

CDN
Amazon CloudFront

Database
Amazon RDS for

MySQL

 Fig. 5.3 High-level architecture diagram (Abbreviations: Amazon S3 Amazon Simple Storage
Service, Amazon RDS Amazon Relational Database Service, CDN Content Delivery Network)

S.R. Balasubramanyam

121

• Amazon CloudFront [22], a SaaS, best fi ts the need of content distribution network,
inclusive of streaming.

• Storage for videos is achieved through IaaS , in particular storage service Amazon
S3 [22].

• As there are multiple cloud players offering SaaS , PaaS and IaaS , it is crucial to
have a seamless integrator that makes it a unifi ed system. IBM WebSphere Cloud
Integrator [23] is the choice here.

5.4 Conclusion

 As evident from the illustrated case study, the activities of each phase are closely
interconnected to the service chosen. Based on choice of services opted for during
the communication phase, the span of activities for each of the functions varies in
the subsequent phases. If the planning phase is not carefully thought through, the
entire project may become highly risky. This means that the planning phase is
extremely crucial to determine successful choice of provider, as also design and
deployment on the cloud.

 Any SaaS opted for mainly involves customisation that may cut down project
resources and project costs in the modelling phase. However, this is not the case if
PaaS and IaaS are opted for. Construction phase follows the same pattern with the
exception of testing. Irrespective of the service selected, prior to fi nal deployment
on the cloud, the application is tested in a simulated environment. The extent of test-
ing can be planned which is based on controls exercised for each service. This can
be better understood with reference to the Wrapper model. The deployment with
SaaS and PaaS here is as per the service providers’ specifi cations. With IaaS , it is
like traditional deployment on a virtual infrastructure. Support and maintenance for
all services in deployment phase rely heavily on the cloud providers’ strategy.

 The development activities of the chosen cloud service follow a linear path under
the classic life cycle model. If all the three services, namely, SaaS , PaaS and IaaS ,
are opted for, then across services within a phase, all activities happen simultane-
ously with varying time durations but with a lag. For instance, while SaaS is in
construction phase, PaaS and IaaS could be in modelling phase.

 If factors like cost, design, technology lead to a single service being chosen,
IaaS leads to virtual infrastructure being used with traditional development, PaaS
leads to virtual platform inclusive of infrastructure used with traditional develop-
ment, while SaaS leads to using customised virtual software. The core differences
among services are highlighted across activities of all the phases in the classic life
cycle model.

 Acknowledgements I would like to thank my colleague Mr. Krishna Prasad Srinivasa Rao for
his assistance in content creation and my managers Mr. Rajagopalan P, Dr. Ramesh Babu S. and
Mr. Srikantan Moorthy for their valuable guidance and support. The encouragement and support
received from my husband Mr. Ravi Balasubramanyam helped me immensely in chapter
presentation.

5 Cloud-Based Development Using Classic Life Cycle Model

122

 References

 1. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared.
Paper presented at grid computing environments workshop, Conference Publications, Austin,
12–16 November 2008

 2. Dollimore, J., Kindberg, T., Coulouris, G.F.: Distributed Systems: Concepts and Design, 4th
edn, pp. 206–207. Pearson Education, Harlow (2005)

 3. Hurwitz, J., Bloor, R., Kaufman, M., Halper, F.: Cloud Computing for Dummies, pp. 197–208.
Wiley, Hoboken (2009)

 4. Velte, T., Velte, A., Elsenpeter, R.: Cloud Computing: A Practical Approach, pp. 253–258.
Tata McGraw-Hill, New Delhi (2010)

 5. Ramaswamy, R. (ed.): The Art and Technology of Software Engineering: A Mosaic of Models
and Methods, pp. 131–139. Tata McGraw-Hill, New Delhi (2002)

 6. NIST Cloud Computing Reference Architecture Version 1, March 30, 2011. http://www.nist.
gov (2011)

 7. Hayes, B.: Cloud computing. Commun. ACM 51 (7): 9–11. http://cacm.acm.org/ (2008)
 8. Gartner Information Technology Research and Advisory Company: http://www.gartner.com
 9. Mateo, L.A.: IBM IT Consulting Leader, Europe, December 13, 2011, Post named “Migration

to cloud: It is all about workloads” at Thoughts on Cloud Blog sponsored by IBM. http://
thoughtsoncloud.com/ (2011)

 10. SETLabsBriefi ngs, Cloud Computing, Infosys Labs Publications, vol. 7, no. 7 (2009)
 11. Chakrabarti, A.: Grid Computing Security. Springer, Berlin/New York (2007)
 12. Symantec, White Paper, The Secure Cloud: Best Practices for Cloud Adoption. http://www.

symantec.com/
 13. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 7th edn. McGraw Hill,

New York (2009)
 14. Pradhan, A., Nanjappa, S.B., Nallasamy, S., Esakimuthu, V.: Raising Enterprise Applications:

A Software Engineering Perspective, pp. 33–39. Wiley India, New Delhi (2010)
 15. Jalote, P.: An Integrated Approach to Software Engineering, 3rd edn, pp. 67–211. Narosa Book

Distributors, New Delhi (2008)
 16. Sommerville, I.: Software Engineering, 8th edn, pp. 131–164. Pearson Education, Harlow

(2009)
 17. Pressman, R.S., Lowe, D.: Web Engineering: A Practitioner’s Approach. Tata McGraw Hill,

New Delhi, pp. 115–116, 253–258 (2011)
 18. Parthasarathy, M.A.: Practical Software Estimation. Addison-Wesley, Upper Saddle River,

pp. 6–22, 206–207 (2007)
 19. Schach, S.R.: Software Engineering, 7th edn, pp. 332, 515–520. Tata McGraw Hill, New Delhi

(2006)
 20. Suh, W.: Web Engineering: Principles and Techniques. Idea Group, Hershey, pp. 1–22, 81–82

(2004)
 21. Tsui, F., Karam, O.: Essentials of Software Engineering, 2nd edn. Jones & Bartlett Learning,

Burlington (2010)
 22. Amazon Web Services: http://aws.amazon.com/
 23. IBM: http://www.ibm.com/
 24. Google Cloud Platform: http://cloud.google.com/
 25. Gerti, K., Siegfried, R., Brigit, P., Werner, R.: Web Engineering, pp. 219–246. Wiley, Hoboken

(2010)
 26. WeVideo: https://www.wevideo.com/

S.R. Balasubramanyam

http://www.nist.gov/
http://www.nist.gov/
http://cacm.acm.org/
http://www.gartner.com/
http://thoughtsoncloud.com/
http://thoughtsoncloud.com/
http://www.symantec.com/
http://www.symantec.com/
http://aws.amazon.com/
http://www.ibm.com/
http://cloud.google.com/
https://www.wevideo.com/

123Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_6, © Springer-Verlag London 2013

 Abstract Cloud computing is an emerging paradigm that is becoming rapidly
popular with business organisations. The software-as-a-service (SaaS) delivery
approach is increasing in demand for yet more cloud-based services. However, this
new trend needs to be more systematic with respect to software engineering (design
and development) and its related processes. In this case, a valid question is: How do
we change our existing user-based requirements capturing methodologies to a suit-
able service-based business requirements engineering ? In this chapter, we present
an approach to cloud requirements engineering that is based on business-oriented
analysis as this is the key to a successful cloud service. This chapter explores the
new requirements engineering process and relevant techniques for capturing cloud-
based services. The process and techniques have been explained using a large-scale
case study based on Amazon Cloud EC2.

 Keywords Cloud computing • Software engineering • Requirements engineering
• Cloud services • Service-oriented computing

 6.1 Introduction

 Cloud computing has evolved to address the availability of computing resources
which can be accessed from anywhere and anytime. In particular, computing hard-
ware and software often gets outdated, and, hence, it is wise to outsource comput-
ing resources and to manage their IT infrastructures outside of their company
premises, which is more cost-effective than the case at present. Applications can be

 Chapter 6
 Business Requirements Engineering
for Developing Cloud Computing Services

 Muthu Ramachandran

 M. Ramachandran (*)
 School of Computing and Creative Technologies, Faculty of Arts,
Environment and Technology, Leeds Metropolitan University, Leeds LS6 3QS, UK
 e-mail: M.Ramachandran@leedsmet.ac.uk

124

leased (as pay-per-use services) rather than being purchased. Also, companies have
increased their data centres due to demand (Amazon , Microsoft and IBM). Cloud
computing is heavily based on ‘software-as-a-service’ concept and needs high-
speed Web access. It provides services on demand, utilising resources more effec-
tively within the cloud environment. The cloud architecture, its layers and its
composition of components and services need to be designed for scalability, secu-
rity and reconfi gurability as they support services and its agreements (e.g. service-
level agreements). In this scenario, the resource management of cloud computing
is key to achieving potential benefi ts.

 Cloud computing is based on Web access. Therefore, we need to design Web
applications which are designed for security. Hence, it is essential to design
cloud applications as Web service components based on well-proven software
process, design methods and techniques such as component-based software engi-
neering (CBSE). Wang and Laszewski [1] defi ne cloud computing as a set of
network- enabled services which provide scalable, guaranteed QoS (quality of
service) and inexpensive computing platforms on demand, which are customis-
able (personalised), and all of which can be accessed in a simple and pervasive
way. An overview of different cloud computing paradigms is presented with defi -
nitions, business models and technologies by Wang and Laszewski [1] and by
many others [1 – 34].

 Traditionally, requirements engineering is defi ned as a set of activities involving
various stakeholders to elicit requirements for a software system. This process is
further refi ned to provide clear classes of requirements such as functional, non-
functional, governance and business. Requirements validation is another process of
making sure that the requirements are clear, consistent and contextual (3Cs).
Business requirements is often not clearly identifi ed and captured as this is directly
related to business level. Therefore, we can defi ne business requirements as a pro-
cess of discovering, analysing, defi ning and documenting the requirements that are
related to enterprise-wide business objectives. This process involves identifying and
capturing key business stakeholders who are mainly investors (use interviews, focus
groups, ethnographic studies and current market analysis), conducting business fea-
sibility analysis using ROI (return on investment) strategies, studying organisational
objectives that should represent true value for long-term investment, analysing the
impact of business change to the enterprise and forecasting profi t with respect to a
set time period, prioritising business requirements and producing a business require-
ments document to sign off.

 SaaS design process involves identifying service components and artefacts that
can all be mapped onto service-oriented architecture (SOA). Software components
provide a good design rationale supporting various requirements of application
developments, design fl exibility, system composition, testability, reusability and
other design characteristics. Component-based designs are customisable and inter-
faces can be designed supporting SLA (service-level agreement). SLAs vary
between service providers which need to be customised without much effort. This
can only be achieved using components which have been designed for fl exible
interfaces that link to a number of SLAs. Each SLA and associate business rule

M. Ramachandran

125

can be represented as a set of interfaces that can be mapped onto knowledge-based
database or a data server. This also allows reuse of SLAs for any individual service
providers. Some of the important characteristics of cloud computing are:

• On-demand services and pay per use
• Handling wide area multiple network addresses
• Resource grouping and management
• Effi cient elasticity vs. costing
• Measurable service delivery and QoS

 The fi rst characteristic of on-demand service and pay-per-use cost effi ciency
model poses tremendous challenges to provide effi cient support and a trustworthy
cost model (provided by cloud service providers) for pay per use for every resource
used by customer services automatically. Cloud computing is based on clients
with high bandwidth for Internet access, and each client may have N number of
end users or cloud application users. Therefore, it will create N * N multiple net-
work addresses which need to be managed accurately as it has a strong depen-
dency for costing users. The second characteristics of cloud computing is based
on clients with high bandwidth for Internet access, and each client may have N
number of end users or cloud application users. Therefore, it will create N*N
multiple network addresses which need to be managed accurately as it has a strong
dependency for costing users. The third characteristic on resource grouping and
management has to be monitored and managed effi ciently by cloud service pro-
viders both reasons of effi ciency and costing. The fourth cloud characteristic on
elasticity , scalability and costing poses huge challenge for cloud service providers
as part of the cloud service management system. The fi nal cloud characteristic on
measurable service delivery and quality of service (QoS) has long-term implica-
tions for cloud service providers to measure and improve service quality
continuously.

 Our earlier work described by Ramachandran [22] on component model for
Web services and service-oriented architecture (SOA), grid computing and vari-
ous other systems can become an integrated aspect of any cloud computing archi-
tectures and application design. We also need to understand the basic differences
amongst SOA (service-oriented architecture), grid and cloud computing. SOA is
to offer services which are based on open standard Internet services and virtuali-
sation technology and have been running in a different environment, grid offers
services from multiple environments and virtualisation and cloud combines both.
We also need to identify a specifi c development process for capturing require-
ments, design and implementation strategies, security and testing cloud applica-
tions. Cloud computing paradigm has lots to offer, but at the same time we need
to consider building a secured and resilient architecture and services that are reli-
able and trustworthy.

 This chapter has proposed a model which is based on the notion of design for
scalability of the cloud architecture which is driven by business requirements. We
have also identifi ed a set of business as a service for Amazon EC2 cloud. The result
shows that 20 % represents BPaaS services from business requirements.

6 Business Requirements Engineering for Developing Cloud Computing Services

126

 6.2 Design for Cloud Applications

 The idea of design for reuse and design for testability have emerged to address how
best design can be represented in the system which refl ects expected design charac-
teristics (based on design principles) such as reusability, testability, securability
(building software security in) and scalability. These are the four basic architectural
characteristics that are prevalent in most systems. The main purpose of identifying
them during requirements stage is to build them right from the beginning; therefore,
they can exhibit themselves on-the-fl y. In order to defi ne a process model for cloud
computing applications, it is useful to capture some of our thoughts on understand-
ing the very nature of cloud characteristics and the type of services that it aims to
provide. Identifying characteristics of a service-oriented system is vital for design-
ers such that they can select, design and evaluate those characteristics that are appli-
cable to their applications. Service-oriented computing (SoC) involves integration
of several disciplines and subject areas, and, therefore, some of the characteristics
will overlap. Some of the identifi ed service components characteristics are:

• Reusable Web services and some other core services
• Enterprise integration services
• Dynamic binding and reconfi gurable at runtime
• Granularity
• Publish, subscribe and discover
• Open world where components must be able to connect and plug to third-party

software systems or components
• Heterogeneity supporting cross-platform applications
• Reconfi gurable
• Self-composable and recoverable
• Cloud infrastructure and resources management
• Autonomic framework
• Middleware
• QoS
• Controllability
• Visibility and fl exibility
• Security and privacy
• High performance and availability
• Integration and composition
• Standards

 These characteristics and their underpinning design principles embody a large
variety of best practices that exist widely. These best practices have evolved over the
last two decades of software engineering . For example, software requirements engi-
neering , software reuse concepts and practices have been widely adopted and are
used in the industry. Therefore, the main aim of this chapter is to consider a system-
atic approach to capturing business requirements that can be applied to the cloud
paradigm. Service design is based on the principle of loosely coupling and therefore
is a good candidate for achieving service-level reuse such as business services,

M. Ramachandran

127

infrastructure services, composite services (as services are designed based on the
principle autonomous), co-operation services, information services, task-oriented
services, and orchestration services). Therefore, service level reuse has potential to
save service development cost and cloud resource utilisation cost. The notion of
design for reuse, design for test (also known as testability) and design for security
exists in software engineering literatures more widely (Ramachandran [22]).
Controllability, visibility and fl exibility are design characteristics that can help to
build and recover new services more widely. High performance, standards and
availability characteristics can provide required service quality. In order to make a
design for cloud applications, we need to understand various required cloud
characteristics and provide a clear set of design guidelines that can be used by cloud
applications engineers. Some of such guidelines are presented as:

• Make applications loosely coupled using SOA principles.
• Design for cloud will provide a value for money in the longer term.
• Use cloud and SOA design principles and characteristics as strictly as possible as

discussed by Erl [10].
• Leverage three-tiered SOA architecture which will even allow you to design a

database service linking to two different cloud providers.
• Make use of asynchronous messaging wherever possible as discussed by

Linthicum [35].
• Avoid cloud-specifi c APIs wherever possible so as allowing portability across

clouds.

 Our work on best practice software guidelines provides a disciplined approach to
service-driven software development life cycle [22]. Our previous work on this has
identifi ed guidelines on good requirements representation using use case models for
identifying common requirements across a range of software product lines [22].
Reuse of service-level business requirements can yield higher-level reuse across
cloud service. Making business service requirements can develop reuse across dif-
ferent levels in the SOA model. Therefore, Fig. 6.1 shows a model for design for
reuse which focuses on elasticity, availability and discoverability, reuse and integ-
rity and performance and security. For each business requirement, we need to

Elasticity, Availability & Discoverability

Cloud Services

Performance & securityReuse & Integrity

 Fig. 6.1 Design for cloud
applications

6 Business Requirements Engineering for Developing Cloud Computing Services

128

conduct analysis based on main six criteria identifi ed in this model with view to
future business and its sustainability.

 For simplicity, we can defi ne some of the terms very briefl y. Elasticity directly
represents business focus for services which provide value proposition, and, therefore,
service should be able to expand and contract resources based on demand and be able
to charge pay per use. Availability can be defi ned with respect to business focus to
ensure that the services are available by creating multiple data centres, proper disaster
recovery planning and providing service recovery and failover mechanisms in place.
Discoverability is one of the key criteria as part of service- oriented design principle,
meaning that the service should be designed in such a way that it can be discovered
automatically and should be able to be adopted by service requesters automatically or
with a minimum human input. Elasticity, availability and discoverability are part of
quality of service (QoS).

 Service reuse can be defi ned as the process of linking business service together
to solve an end-to-end business problem or a business process. Although this looks
simple but can create reuse across cloud services with automatic discoverability and
composability with strict integrity in place. Oh et al. [36] states that the reusability
is a key intrinsic characteristic of cloud services and can yield a high return on
investment (ROI) . Services can be reused and composed to create new cloud ser-
vices and applications from a set of common service directories across different
cloud providers. Service integrity can be defi ned as the degree to which a service
can be provided without excessive impairment and the degree to which it provides
fair value to the business. Service reusability and integrity are part of the key criteria
for measuring the quality of service (QoS).

 One of the main reason for moving cloud is the cost benefi t. Therefore, it is para-
mount for cloud providers to ensure performance is effective. There are a number of
performance characteristics such as network throughput and latency. Service avail-
ability is another key factor in measuring cloud performance. This is also known as
uptime. Other parameters include scalability of service applications, pay per use,
load balancing, elastic load balancing, number of cloud computing created per ser-
vice instance, number of cloud images created per instance, number of cloud
resources created per instance and cloud profi ling.

 Cloud security is paramount amongst all other characteristics as cloud service is
internet based. Therefore, we need to make sure that network security, denial of
service attacks, software service security and other forms of security are well pro-
tected. Other aspects include cloud content management, privacy, business continu-
ity and data recovery.

 6.3 Business-Oriented Cloud Service Development Process

 Identifi cation of service requirements needs a new RE process and modelling tech-
niques as it is highly dependent on multilevel enterprises across corporation.
Identifying and knowing all requirements for all expected and even unexpected

M. Ramachandran

129

services is very hard. The idea in service-oriented engineering is to publish auto-
matically new services whereby service agents can then be able request and take
advantages of required services for their customers. Figure 6.2 shows a develop-
ment process model for service-oriented computing where initial requirements are
captured based on enterprise-wide techniques and perhaps using domain analysis
which should focus on a family of products and services. The second phase
(Services RE) involves identifying a set of requirements of system services.
This process involves service modelling and service specifi cation for which we can use
any well- known techniques such as use case design and a template for service-level
specifi cations.

 The third phase (Categorising services) involves classifying and distinguishing
services into various categories such as enterprise integration services (services
across corporations, departments, other business services), BPaaS (which represents
process related to businesses), software services (which represents core functionality
of software systems), business logic services (which represents business rules and its
constraints) and Web services (a self-contained and Web-enabled entity which pro-
vides services across businesses and customisable at runtime). IT core services
include resource management, help desk systems, IT infrastructure, procurement,
delivery services, B2B and B2C services, data services, QoS services, middleware

 Fig. 6.2 Business-oriented cloud service development process

6 Business Requirements Engineering for Developing Cloud Computing Services

130

services, transaction management services, process integration services, reconfi gu-
rability services and grid services which include grid resource management and
reconfi gurations. Based on the above fi nding, we can propose a new paradigm for
cloud applications engineering as shown in Fig. 6.3 . This illustration provides a rel-
evant link to classical software engineering process.

 As shown in Fig. 6.3 , the requirements phase is linked to identifying cloud
requirements which should, in particular, identify service requirements and relevant
software security requirements so that cloud services are built with security in rather
than adding security batches after release. The design phase is linked to designing
services for cloud environment which are reusable. Services are designed as loosely
coupled allowing high potential for reuse. The code/implementation phase is linked
to service development. Likewise testing and QA are related to cloud testing
 strategies and quality engineering.

 The key difference in cloud SE life cycle is service quality engineering/assurance
(SQoS). Service quality engineering/assurance represents quality of service
aspects which is different from software engineering quality. SQoS should con-
sider parameters such as workfl ow management which helps to manage resources
instantly, accuracy and accountability of pay-per-use, throughput, latency and
service satisfactory index.

 6.3.1 Business Process as a Service Paradigm

 Business process as a service (BPaaS) is a top-level part of the service-level archi-
tecture (BPaaS → SaaS → PaaS → IaaS) for cloud platform. This refers to any busi-
ness process such as payroll, multivendor e-commerce, advertising, printing,
enterprise-wide applications and common business processes and could include
contract negotiation services [37]. BPaaS services can also be designed to automate

 Fig. 6.3 Software engineering vs. cloud service engineering life cycle

M. Ramachandran

131

certain business utility services such as billing and shipping. BPaaS can be a part of
internal cloud services as well as external services from different cloud vendor
types such as public, hybrid and virtual private. Gandhi [37] addresses some of the
key questions that need to be addressed:

• What are the key attributes of BPaaS services to negotiate and gain new business
strategies?

• How can BPaaS partnering services accelerate new businesses?
• What are the implications if we don’t act now?

 These are some of the key strategies and business analysis to be considered for
designing BPaaS services. We should be able to use and transfer knowledge gained
in business strategies and business process re-engineering and enterprise-wide
applications. Figure 6.4 provides a process for capturing and designing BPaaS.

 As shown in Fig. 6.4 , we should be able to identify and extract business pro-
cesses and business-related functions as candidate for BPaaS from business require-
ments capturing process. The second step is to conduct a detailed workfl ow and task
analysis for each suitable BPaaS service. The third step is to conduct business pro-
cess re-engineering (BPR) for each service which aims to identify ROI , business
needs analysis, market analysis and business negotiation strategies for each task that
is identifi ed in the workfl ow analysis. Finally, conduct business effective analysis
which interlinks internal and external cloud environment.

 BPaaS’ s most important aspect of the service is to integrate scattered and embed-
ded business rules together in many organisations. Often business rules are scattered
and some embedded in different places within the organisations. Therefore, organ-
isations have diffi culties in dealing with constant change and evolution of new busi-
nesses. BPaaS will also act as business rule management system (BPMR).

 6.4 Business Requirements Engineering Process
and Framework

 Businesses are striving through tough market competition to deliver value-driven
products and services. The pace of business delivery has rapidly changed since
well-established business practices, nature of business service with advancement
and demand for technology-based business services such as e-commerce,
e- government, Web services and cloud services . People are looking for value for

 Fig. 6.4 BPaaS process scenario

6 Business Requirements Engineering for Developing Cloud Computing Services

132

money as well as automated results (self-driven services). Cause [38] discusses a
concept known as PRAISED which is defi ned as follows:

• P → Productivity gains
• R → Reduced cost
• A → Avoided cost
• I → Increased revenue
• S → Service-level improvements
• E → Enhanced quality
• D → Differentiation in the marketplace

 Cause [38] argues that many companies force technologies to be sold as their
way of improving business value without understanding of business and market
needs. Cause [38] has also proposed a feature-driven development (FDD) approach
to identifying business need to drive business value as it captures required features
of a business and a product. Our approach to identifying BPM using PRAISE model
will enhance BPM to drive market and business values. Figure 6.5 shows cloud
business-oriented requirements engineering which compares with classical require-
ments engineering process.

 As shown in Fig. 6.5 , classical market requirements process needs to be used for
conducting business requirements for cloud services which will include business
strategies, identifying business services requirements, market analysis and ROI .
The second phase is the requirements elicitation and specifi cation which aims to
identify stakeholders and conduct requirements analysis and validation which will
derive service requirements elicitation, evaluation and validation. This phase will
also derive business process modelling using BPMN, and business process simula-
tion will form the basis for service requirements validation. The fi nal process will
deliver hand-picked candidates for business services requirement.

 Fig. 6.5 Cloud business-oriented requirements engineering

M. Ramachandran

133

 Software security has emerged to build security in from requirements through to
testing. Security assessment and analysis needs to be applied for each phase of the
life cycle [39]. Software engineering has established techniques, methods and tech-
nology over two decades. However, due to the lack of understanding of software
security vulnerabilities, we have been not successful in applying software engineer-
ing principles when developing secured software systems. Therefore, software
security can’t be added after a system has been built as seen in today’s software
applications. However, the issue here is to apply software security techniques to
cloud services . Services are application system and therefore we should be able to
apply those techniques to develop cloud services with built-in security.

 Figure 6.6 shows a process model for the development of cloud services with
built-in security. As shown in the diagram, the cloud development process model
consists of a number of phases such as RE for cloud, conducting BPM modelling
and specifi cation (using BPMN 2 standard and BPEL), identifying and specifying
SLAs, building software security in, designing services and testing and deploying.

 As part of the cloud service requirements engineering process, we can apply
software security engineering techniques all identifi ed cloud services . This
includes using security analysis tree and various other techniques specifi ed by
Ramachandran [39]. The second step is on identifying BPM (business process
modelling) which should include software security analysis for each business pro-
cess identifi ed to allow us to identify potential security threats. This has been
illustrated in Fig. 6.6 which starts with service requirements and business require-
ments (as shown in Fig. 6.5) as the input to conduct service security analysis using
techniques such as Secure Quality Requirements Engineering (SQUARE) and
Microsoft Secure Development Lifecycle (SDL). The outcome of this process
should yield a set of cloud services security requirements with clear indication of
software security issues. The second phase is to conduct business process man-
agement during this process should identify a set of business process require-
ments with security vulnerabilities.

 The third phase is to identify service-level agreements (SLAs) which should derive
a set of security specifi c rules. It is also a well-known best practice that eliciting and

 Fig. 6.6 Cloud service security development process with built-in security

6 Business Requirements Engineering for Developing Cloud Computing Services

134

validating service-level requirements early can save as much as 70 % of the overall
test and development costs. Typically, SLA refers to a part of service contracts defi n-
ing performance attributes, message passing constraints, problem management,
customer duties, warranties, disaster recovery, service termination agreements and
required local and international laws etc., all of which can be embedded as part of the
WSDL specifi cations. In the context of business-oriented requirements, we need to
identify SLA with regard to B2B, B2C and business process and operational con-
straints. This allows services to make decision on acquiring new businesses. This can
further be classifi ed into new and existing business services, customer-driven services,
market-driven services, corporate-level services and enterprise-level services. In general,
we can defi ne a good business process as

 Business Process Business Rules Process= +

that results in simple processes, higher agility, trust, business integration and bet-
ter risk management. This will also help business processes to defi ne service
trust which is the higher form of business quality as part of QoS performance
characteristics. Building trust is the basic means of creating a branding which
has been historically successful for major business across the world. Cloud secu-
rity risks analysis should also be part of this process to identify risk associated
with each security and business requirement. Therefore, we propose a framework
for conducting security risk assessment. This is shown in Table 6.1 , a risk analy-
sis framework which can be used to systematically analyse cloud security risks.
The framework provides a comprehensive structure for analysing cloud security
risks. This framework consists of service layers and their type of service security
attacks that are well known. For each of those security attributes, we need to
assign a weighting factor from 10 to 1. The weighting factor 10 (high) has higher
risks, 5 (medium) and 1 (low). At the SaaS level, the well-known security risks
are DDoS, data stealing, wrapping attack, accountability attack etc.

 Table 6.1 Cloud security risk analysis framework

 Service layer

 Known types of security threats
and attacks on the cloud service
that will affect your network

 Weighting factors for require-
ments prioritisation – High = 10;
Medium = 5; Low = 1

 SaaS (Software
as a Service)

 DDoS (distributed denial
of service attack)

 8

 Data stealing 3
 Wrapping attack 4
 Accountability attack 4
 Man in the middle attack 6
 Botnet attack 7

 PaaS (Platform
as a Service)

 SQL injection 6
 SSL attack 3
 Spoof attack 5

 IaaS (Infrastructure
as a Service)

 Blackout/outage 1
 Malware injection attack 3

M. Ramachandran

135

 At the PaaS level, the well-known attacks are SQL injection, SSL attack and spoof
attack. At the IaaS level, the well-known attacks are blackout and malware attacks.
These lists are not limited to security risks shown in our framework which are com-
monly known and the discovery of such security risk identifi cation should continue
to grow as we gain more user experiences. The above weighting factor for prioritis-
ing security requirements is the average of total score against its known frequency of
threats, loss of business days (in terms of technical challenges associated to recover),
fi nancial loss and predictability. Ramachandran [39] discusses more detailed
approaches to vulnerability analysis.

 The next phase is on service design which starts with business and service
requirements in order to design cloud service components, service interfaces and
architecture. During this stage, we need to identify security-driven approach to
design of interfaces, message descriptions and handing vulnerabilities that are iden-
tifi ed in the previous phase. The fi nal phase is on cloud testing and deployment.
During this phase, the main aim is to identify security test strategies such as penetra-
tion testing, attack tree testing and other forms of testing. Numerous test strategies
have been discussed by Ramachandran [39].

 To help manage business process requirements, we have identifi ed a generic enter-
prise requirements framework (ERF) as shown in Fig. 6.7 . The concept of enterprise
requirement is based on IT service management, business process management and
software development. The main aim is to identify business goals, service concept,
change management, organisational rules, enterprise economics, business analysis
and software development. Business analysis can be defi ned as a set of tasks, knowl-
edge and techniques that are required to identify business needs and to determine
solution to business problems. The solutions often include system development, soft-
ware development, organisational change and process improvement [40].

 The ERF, as presented in Fig. 6.7 , consists of three major categories:

• Customer requirements aim to identify service needs, business goals and business
types. This further classifi ed into B2B, B2C and C2C business types. Secondly, it aims
to identify service requirements and, thirdly, to identify governance requirements.

• Market analysis aims to identify clear rationale for a business service and to
analyse return on investment strategies. This further classifi ed into industry
strategies, opportunities, competitor analysis and business assets.

• Investment analysis aims to identify required systems, services and infrastructures.
The application system refers to identifying cloud infrastructure services, content
management services and service types such as SaaS , PaaS and IaaS . This further
classifi ed into identifi cation of business application systems; dynamic scaling is the
key basic rationale behind elasticity , the ability of a cloud to be able to add and remove
capacity as and when it is required. This can also be referred as elastic scaling.
Secondly, to identify infrastructure services refers to management services required to
manage IaaS. Thirdly, to identify service security rationale, risk analysis, availability
and resiliency is the ability to withstand security attacks and vulnerability.

 The ERF framework provides a structured approach to capturing enterprise
requirements. The ERF can also be used to document enterprise-wide requirements
as it provides a template. This should also identify peak user performance metrics,

6 Business Requirements Engineering for Developing Cloud Computing Services

136

capacity planning, security and privacy, availability, response time, hours of opera-
tion, pay-per-use calculations, server load, load balancing and cloud management.

 6.5 Design of Service Components

 Component models and their architecture provide a framework for system composi-
tion and integration. A generic component model that is presented in this chapter
provides a unique concept of two distinct set of services: provide and requires .
Software components are the basic unit of artefact that supports service composi-
tion with the cloud computing architecture and its environment. However, each
development paradigm and application demands customisable and extendable com-
ponent architectures that suit the needs of their applications. Each Web service com-
ponent interface is mapped onto different ports within architectural layers to request
for services and offer services as and when required at runtime.

 The aim is to map business requirements onto a service component that can be
designed and implemented. A service component can be defi ned as the one that confi g-
ures a service implementation. A service component model (UML-based service model)
is shown in Fig. 6.8 which refl ects service component design principle with a number of
plug-in-type interfaces that allow to connect other service components, service provider
type of interfaces (IServiceInterface1, 2 etc.) and IServiceContract interface which is
a unique concept in our design that allows you to build and reuse business rules. The
other types of interface include EntryPort, RejectedMessagePort and ExitPort.
These interfaces refl ect WSDL descriptions and can be automatically generated.

 Fig. 6.7 Enterprise requirements framework

M. Ramachandran

137

Service Component

PlugIn1

PlugIn2

<<component>>
Service/SaaS

EntryPort RejectedMessagePort ExitPort

IServiceInterface1

IServiceInterface2

IServiceContract

 Fig. 6.8 Component model for SaaS

Service component

IInBoundContracts

IOutBoundContracts

IOutBoundContracts

IQoSContracts

IServiceContract

IInBoundContracts

 Fig. 6.9 Component model for service contract interface

 The service contract interface IServiceContract is a complex class as it allows us to
build component rules and be able to reuse them in another service implementation
where the similar design contract applies. Due to its nature of complexity, we have
designed a separate service component as shown in Fig. 6.8 . The service contract
component model provides plug-in interfaces such as IInBoundContracts which
allows a service component to take business contracts/rules as input to the component,
whereas the provider interface such as IOutBoundContracts provides business con-
tract services to other service components. The IQoSContracts service provides ser-
vices contracts on quality of service rules that are embedded within the service
component implementation (Fig. 6.9).

 The service component modelling and design provides a systematic approach to
building cloud service components to allow on-the-fl y confi guration, to discover
new business services and to be able to connect and disconnect service composi-
tions. Service composition is one of the key principles of service design which can’t
be achieved without a component-based approach. The design principle of

6 Business Requirements Engineering for Developing Cloud Computing Services

138

component interface allows service fl exibility, elasticity and scalability. A service
composition is defi ned as the development of customised services by discovering,
integrating and executing existing services. Design of service composition is not
only to consume services but also to provide services. Cloud service orchestration
layer and its principle can also be addressed and achieved using service composition
when services are designed as components based on the model as shown here.

 Service composition and orchestration allows service-level reuse to happen. Service
reuse is a notion of designing services as generic as possible to be reused in another
service invocation. Designing services for reuse is based on SOA design principles:

• Loose coupling is to limit dependency between service consumers and service
providers. This can be achieved by service interface design which has been part
of a service component model as discussed.

• Autonomy is the key principle that enables service reuse. This can be achieved
by designing services that can manage their own resources as database and lega-
cies and to maintain by themselves without depending on other services. Service
autonomy facilitates service adoption, scalability, QoS , SLA and virtualisation.

• Statelessness is the property of a service to have a context, but it will not have
any intermediary state waiting for an event or a callback.

• Granularity has been a prominent design principle of reuse. A large granularity
of service component which is self-autonomous can yield higher level of service
reuse through service composition. However, a balance must be struck when
designing service components and interfaces.

• Composability is the process by which services are combined and integrated to
provide a comprehensive and composite service. This principle is also the key to
achieving cloud orchestration. A composite service consists of an aggregation of
services that can produce another reusable service (s).

• Discoverability is an important means of mandating service time (design time
reuse and runtime discoverability) notion when designing service components so
that component can be called on when required. Service component interface
concept allows components to be discovered and connected.

 Designing reusable services can save cost as it is a well-known benefi t of reuse.
Cost reduction is one of the key aspects of cloud computing which aim to reduce cost
for consumers by allowing pay-per-use cost model. The design rationale and service
component model discussed in this section will help to improve cloud service reuse
experiences.

 6.6 Case Study: Amazon EC2

 Amazon has three main businesses that are consumer business, seller business and
IT infrastructure business. Firstly, let’s look at initial business requirements set out
by Amazon to create a new cloud as a new business venture. It is aimed to build a

M. Ramachandran

139

powerful cloud with features supporting scalability, failure resilient and enterprise
applications including (EC2 2012 [41]):

• Elastic and scalable means users can increase or decrease computational power
and other resources within minutes and are charged per use.

• Flexible means users have the choice to choose type of OS, platforms, multiple
instances and applications packages.

• Designed for use with other Amazon Web services such as Amazon S3 (a simple
storage service), RDS (relational DB services), SimpleDB and Amazon SQS
(simple queue service).

 These are the examples of non-functional requirements. There are more than
100 business processes, also known as functional requirements, identifi ed from
this study which are of typical nature such as account creation, pay-per-service
metre, resource management and usage, billing and payment, data storage and
maintenance and security and privacy related. Some of the currently offered
Amazon Web services are, as part of the AWS, shown in Fig. 6.10 and explained
as follows:

• Higher level business processes for Amazon EC2 which consists of composite
business services such as RDS, MapReduce, S3, SimpleDB, VPC and SQS.

• Each of these business services can be decomposed into a number categories of
business services such task-oriented, infrastructure-oriented, and business
service-oriented.

 We have developed a number of business services using Bonita software for
business process modelling using BPMN notation.

Create EC2
Instance

Amazon EC2 Service
(Amazon Web Service

AWS)
Amazon S3 (Simple

Storage Service)
Amazon VPC (Virtual
Private Cloud as IaaS)

Amazon SQS
(Simple Queue

Service)

Amazon SimpleDB
(Core database

service)

Amazon RDS
(Relational
Database)

Amazon
CloudFront

Amazon Elastic
MapReduce (data
analysis service)

EC2 user

M
yP

ro
ce

ss
1

La
ne

1

 Fig. 6.10 Amazon Web services (business process modelling)

6 Business Requirements Engineering for Developing Cloud Computing Services

140

 The business process model design tool which is used in this project is Bonita
OpenSolution-v5.5 (BOS 5.5). Bonita Open Solutions 5.5 is not only for modelling
but we can also conduct process simulations and debugging the process. We can
also conduct a range of business process modelling tasks such as service, users, call
activity, script, abstract, send and receive. The fi nal simulation process graphs are
displayed in another GUI tab. To run the simulation with Bonita, we need to com-
plete three major steps such as:

• Defi ne the process.
• Manage the resources.
• Load profi les.

 After completion of the three processes, we then should be able to generate
reports of the designed process. We can generate graphs against various process and
performance parameters such as execution time, time to completion, response time
and raise alarm to study any intrusion during a specifi c time period.

 Amazon S3 (Simple Storage Service) provides a simple Web services inter-
face that can be used to store and retrieve any amount of data, at any time, from
anywhere on the Web. It provides a discoverable WSDL document describing
service operations that can be implemented using RESTful HTML as well as
SOAP RPC interfaces. In this experiment, we have attempted to describe its
basic functionality using a subset of the available services. Basic executable
SOA business models were created based on assumptions made from informa-
tion provided by online Amazon AWS documents. The Amazon S3 Web Service
is just one piece of entire Amazon AWS SOA structure. Other than discoverabil-
ity, none of the SOA Design concepts can really be applied to the Amazon S3
service on its own. Some of the AWS business services are identifi ed as follows
(EC2 2012 [41–42]):

• Amazon S3 (Simple Storage Service) provides a simple Web services interface
that can be used to store and retrieve any amount of data, at any time, from any-
where on the Web.

• Amazon EC2 (Elastic Compute Cloud) is a Web service that provides resizable
compute capacity in the cloud.

• Amazon CloudFront is a Web service for content delivery. It integrates with
other Amazon Web Services to give developers and businesses an easy way to
distribute content to end users with low latency, high data transfer speeds and no
commitments.

• Amazon Route 53 is a highly available and scalable DNS service designed to
give developers and businesses an extremely reliable and cost-effective way to
route end users to Internet applications.

• Amazon RDS (Relational Database Service) is a Web service that makes it easy
to set up, operate and scale a relational database in the cloud.

• Amazon SimpleDB (Simple Database Service) is a Web service providing the
core database functions of data indexing and querying in the cloud.

M. Ramachandran

141

• Amazon SQS (Simple Queue Service) is a reliable, highly scalable, hosted queue
for storing messages as they travel between computers.

• Amazon SNS (Simple Notifi cation Service) is a Web service that makes it easy
to set up, operate and send notifi cations from the cloud.

• Amazon Elastic MapReduce is a Web service that enables businesses, research-
ers, data analysts and developers to easily and cost-effectively process vast
amounts of data.

 These services have been considered as a whole to meet the multiple SOA Design
criteria by being business-driven, enterprise-centric, loosely coupled, discoverable,
stateless and fl exibly contractable, and they promote vendor neutrality. The services
are provided by Amazon but they can be accessed by any language running on virtu-
ally any platform. They are highly scalable and the pricing structure is set up on a
cost-per-use basis. Services can be scaled almost instantly when needed and reduced
just as fast providing the best of both worlds for businesses, on-demand access with-
out the associated overhead and the delay that would otherwise be required for local
on-site implementation. Figure 6.11 shows a bar chart of 100 business processes,
out of which we have discovered about 20 BPaaS processes, which is about 20 %.

 This is an interesting outcome for our research, in particular, how many BPaaS
requirements that can be extracted to evaluate business process service exclusively.
BPaaS has a growing strength in making cloud a success with respect to business as
a service.

 6.7 Conclusion

 Cloud computing is emerging rapidly with increasing demand for service-oriented
computing and associated technologies. This is the right time to explore what works
better and what doesn’t work for cloud environment. Therefore, the proposed model
helps to understand how it should be developed to avoid classical issues related to
software development projects. We believe the proposed model will help us to
develop cloud applications systematically. This project has explored some of the
process described using Amazon EC2 case study, and we have discovered that there
are 20 % of the service requirements that belong to BPaaS as it is a growing busi-
ness entity for cloud services .

 Fig. 6.11 Amazon BPaaS
requirements

6 Business Requirements Engineering for Developing Cloud Computing Services

142

 References

 1. Wang, L., Laszewski, V.G.: Scientifi c cloud computing: early defi nition and experience. http://
cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf (2008)

 2. Creeger, M.: Cloud computing: an overview. Distributed computing. ACM Queue. http://
queue.acm.org/detail.cfm?id=1554608 , June 1, 2009

 3. Aoyama, M., et al.: Web services engineering: promises and challenges. In: ICSE’02, Orlando,
19–25 May 2002

 4. Bertolino, A., et al.: Audition of web services for testing conformance to open specifi ed proto-
cols. In: Stafford, J., et al. (eds.) Architecting Systems with Trustworthy Components. Springer,
Berlin/New York (2006)

 5. Bias, R., Cloud Expo Article, Cloud Computing: Understanding infrastructure as a service.
Cloud Comput. J. http://cloudcomputing.sys-con.com/node/807481 . January 2009

 6. Chesbrough, H., Spohrer, J.: A research manifesto for services science, Special issue on ser-
vices science. CACM 49 (7), 30–87 (2006)

 7. Cobweb: http://www.cobweb.com/ (2009)
 8. Curbera, F.: Component contracts in service-oriented architectures, Special issue on service-

oriented computing. IEEE Comput. 40 (11), 74–80 (2007)
 9. Clarke, R.: User requirements for cloud computing architecture. In: 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing, Melbourne, 17–20 May
2010

 10. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Upper Saddle River (2005)

 11. Farrell, J., Ferris, C.: What are web services? (Special issue). CACM 46 (6), 31 (2003)
 12. Khaled, L.: Deriving architectural design through business goals. Int. J. Comput. Sci. Inf.

Secur. (IJCSIS) 7 (3), 20–26 (2010)
 13. Helbig, J.: Creating business value through fl exible IT architecture, Special Issue on service-

oriented computing. IEEE Comput. 40 (11), 80–89 (2007)
 14. IaaS, Cloud computing world forum. http://www.cloudwf.com/iaas.html (2010)
 15. IThound Video Whitepaper. http://images.vnunet.com/video_WP/V4.htm (2010). Accessed

Feb 2010
 16. Lakshminarayanan, S.: Interoperable security service standards for web services, IT pro. IEEE

CS Press USA (2010)
 17. Nano, O., Zisman, A.: Realizing service-centric software systems, Special issue on SoC. IEEE

Softw. 24 (6), 28–30 (2007)
 18. Naone, E.: Computer in the cloud, technology review. http://www.technologyreview.com/

Infotech/19397/?a=f (2007)
 19. NIST: http://csrc.nist.gov/groups/SNS/cloud-computing/index.html (2009)
 20. PaaS. Types of PaaS solutions http://www.salesforce.com/uk/paas/paas-solutions/ (2010)
 21. Papazoglou, P.M., et al.: Service-oriented computing: State of the art and research challenges,

Special issue on service-oriented computing. IEEE Comput. 40 (11), 38–45 (2007)
 22. Ramachandran, M.: Software Components: Guidelines and Applications. Nova, New York (2008)
 23. SaaS: SaaS http://www.saas.co.uk/ (2009)
 24. Science Group, 2020 Science Group: Toward 2020 science, tech. report, Microsoft. http://

research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf (2006)
 25. Serugendo, G., et al. (eds): Self-organisation: paradigms and applications. In: Engineering

Self-Organising Systems: Nature-Inspired Approaches to Software Engineering. Springer,
Berlin/New York (2004)

 26. Taiyuan, S.: A fl exible business process customization framework for SaaS. In: WASE
International Conference on Information Engineering, Taiyuan, 10–11 July 2009

 27. Tyagi, S.: RESTful web services. http://www.oracle.com/technetwork/articles/javase/index-
 137171.html (2006)

M. Ramachandran

http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf
http://queue.acm.org/detail.cfm?id=1554608
http://queue.acm.org/detail.cfm?id=1554608
http://cloudcomputing.sys-con.com/node/807481
http://www.cobweb.com/
http://www.cloudwf.com/iaas.html
http://images.vnunet.com/video_WP/V4.htm
http://www.technologyreview.com/Infotech/19397/?a=f
http://www.technologyreview.com/Infotech/19397/?a=f
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html
http://www.salesforce.com/uk/paas/paas-solutions/
http://www.saas.co.uk/
http://research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf
http://research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html

143

 28. Venkataraman, T., et al.: A model of cloud based application environment. Int. J. Comput. Sci.
Inf. Secur. (IJCSIS) 7 (3) (2010)

 29. Verizon: http://www.zdnet.co.uk/news/cloud/2010/10/08/the-cloud-lessons-from-history-
 40090471/ . October 2010

 30. Vouk, M.A.: Cloud computing – issues, research and implementations. J. Comput. Info.
Technol. (CIT) 16, 40–45 (2008)

 31. Wilson, C., Josephson, A.: Microsoft offi ce as a platform for software + services. Archit. J.
(13). www.architecturejournal.net . 98–102 (2007)

 32. Weiss, A.: Computing in the clouds. http://di.ufpe.br/~redis/intranet/bibliography/middleware/
weiss-computing08.pdf , December 2007

 33. Yang, J.: Web service componentisation. Commun. ACM 46 (10), 35–40 (2003)
 34. Zhang, L-J., Zhou, Q.: CCOA: Cloud Computing Open Architecture. In: IEEE International

Conference on Web Services, Bangalore, 21–25 September 2009
 35. Linthicum, D.: Application design guidelines for cloud computing. InfoWorld. http://www.

infoworld.com/d/cloud-computing/application-design-guidelines-cloud-computing-
784?page=0,0 . November (2009)

 36. Oh, S.H., et al.: A reusability evaluation suite for cloud services. In: Eighth IEEE International
Conference on e-Business Engineering. IEEE CS Press USA (2011)

 37. Gandhi, B.: Business Process as a Service (BPaaS) delivered from the cloud. http://thought-
soncloud.com/index.php/2011/12/business-process-as-a-service-bpaas-delivered-from-the-
cloud/ . December (2011)

 38. Cause, G.: Delivering real business value using FDD. http://www.methodsandtools.com/
archive/archive.php?id=19 . Accessed April 2012

 39. Ramachandran, M.: Software Security Engineering: Design and Applications. Nova Science,
New York, ISBN: 978-1-61470-128-6. https://www.novapublishers.com/catalog/product_
info.php?products_id=26331 (2012)

 40. Longo, T., Hass, K., Cannon, D.: ITIL, business analysis and the enterprise requirements hier-
archy. http://h10076.www1.hp.com/education/ITIL_BusAnalysis_Enterprise_Req_Hierarchy.
pdf (2012)

 41. EC2: http://aws.amazon.com/ec2/ (2012). Accessed April 2012
 42. What is Cloud Computing – A complete engineering of design and implementation of cloud

computing. http://www.keendirect.com/blog/cloudcomputing/ . Accessed April 2012

6 Business Requirements Engineering for Developing Cloud Computing Services

http://www.zdnet.co.uk/news/cloud/2010/10/08/the-cloud-lessons-from-history-40090471/
http://www.zdnet.co.uk/news/cloud/2010/10/08/the-cloud-lessons-from-history-40090471/
http://www.architecturejournal.net/
http://di.ufpe.br/~redis/intranet/bibliography/middleware/weiss-computing08.pdf
http://di.ufpe.br/~redis/intranet/bibliography/middleware/weiss-computing08.pdf
http://www.infoworld.com/d/cloud-computing/application-design-guidelines-cloud-computing-784?page=0,0
http://www.infoworld.com/d/cloud-computing/application-design-guidelines-cloud-computing-784?page=0,0
http://www.infoworld.com/d/cloud-computing/application-design-guidelines-cloud-computing-784?page=0,0
http://thoughtsoncloud.com/index.php/2011/12/business-process-as-a-service-bpaas-delivered-from-the-cloud/
http://thoughtsoncloud.com/index.php/2011/12/business-process-as-a-service-bpaas-delivered-from-the-cloud/
http://thoughtsoncloud.com/index.php/2011/12/business-process-as-a-service-bpaas-delivered-from-the-cloud/
http://www.methodsandtools.com/archive/archive.php?id=19
http://www.methodsandtools.com/archive/archive.php?id=19
https://www.novapublishers.com/catalog/product_info.php?products_id=26331
https://www.novapublishers.com/catalog/product_info.php?products_id=26331
http://h10076.www1.hp.com/education/ITIL_BusAnalysis_Enterprise_Req_Hierarchy.pdf
http://h10076.www1.hp.com/education/ITIL_BusAnalysis_Enterprise_Req_Hierarchy.pdf
http://aws.amazon.com/ec2/
http://www.keendirect.com/blog/cloudcomputing/

145Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_7, © Springer-Verlag London 2013

 Abstract Cloud computing is often used to describe a model for ubiquitous,
convenient, and on-demand network access to shared pool of configurable
computing resources that can be rapidly provisioned and released with minimal
management effort or service provider interaction. Cloud computing heralds the
trend of service provider companies in comparison to traditional software licens-
ing era. As the Cloud-based services are increasing and businesses catered
through software services require reassurances, so there is a need to test those
services and applications before offering them to the customers. Cloud-based
testing offers reduction in the unit cost of computing with test effectiveness, on-
demand fl exibility, freedom from holding assets, enhanced collaboration, greater
levels of effi ciency, and, most signifi cantly, reduced time-to-market for key busi-
ness applications. This chapter largely quantifi es on testing related to Cloud
computing, elaborates fundamentals of testing and differentiates between tradi-
tional software testing techniques and software testing in Cloud environment.
It also emphasizes on analysis of the existing Cloud-based testing models and
their limitations and Cloud-based application frameworks. The chapter con-
cludes with the discussion on need of automated test case generation techniques,
potential research directions, and technologies for testing approaches in Cloud
environments.

 Keywords Cloud-based applications • Testing in the Cloud • Cloud applications
framework

 Chapter 7
 Testing Perspectives for Cloud-Based
Applications

 Inderveer Chana and Priyanka Chawla

 I. Chana (*) • P. Chawla
 Computer Science and Engineering Department, Thapar University, Patiala, India
 e-mail: inderveer@thapar.edu; priyankamatrix@gmail.com

146

7.1 Introduction

 Software testing ensures correctness, robustness, reliability, and quality in software
and is thus fundamental to software development. Testers often execute software
under a stipulated environment as well as out of bounds with the intent of fi nding
errors in it [1]. According to IEEE, software testing is the process of analyzing a
software item to detect differences between existing and required conditions and to
evaluate the features of the software item [2]. Software testing is considered to be a
critical element of software quality assurance due to the following reasons [3]:

• To test a developed system for its performance, reliability, and quality
• To ensure long-lasting working of the software without failures
• To detect the bugs and deviations from specifi cations before delivering it to the

customer

 Software testing comprises verifi cation and validation tasks. Verifi cation is the
process of evaluating a system or component to determine whether the products of
a given development phase satisfy the conditions imposed on that phase. Validation
is the process of evaluating a system or component during or at the end of develop-
ment process to determine whether it satisfi es specifi ed requirements [IEEE/ANSI].
Hence, software testing is not limited to executing software to fi nd defects only but
also to test documents and other non-executable forms of a software product and
does often become bottleneck in software development.

7.1.1 Software Testing in the Cloud

 Testing is a challenging activity for many software engineering projects, espe-
cially for large-scale systems. The amount of test cases can range from a few
hundred to several thousands, requiring signifi cant computing resources and
lengthy execution times. Cloud computing offers resources like virtualized hard-
ware, effectively unlimited storage, and software services that can aid in reducing
this execution time of large test suites in a cost-effective manner. Many organiza-
tions like SOASTA, Microsoft, Rackspace, Sogeti, IBM, CloudTesting, Wipro,
and HP provide Cloud- based testing services such as performance testing, load
testing, and Web-based application testing. Following factors account for the
migration of testing to the Cloud [4]:

 (a) Testing is a periodic activity and requires new environments to be set up for
each project. Test labs in companies typically sit idle for longer periods, con-
suming capital, power, and space.

 (b) Testing is considered an important but non-business-critical activity. Moving
testing to the Cloud is seen as a safe bet because it doesn’t include sensitive
corporate data and has minimal impact on the organization’s business-as-usual
activities.

I. Chana and P. Chawla

147

 (c) Applications are increasingly becoming dynamic, complex, distributed, and
component based, creating a multiplicity of new challenges for testing teams.
For instance, mobile and Web applications must be tested for multiple operating
systems and updates, multiple browser platforms and versions, different types
of hardware and a large number of concurrent users to understand their perfor-
mance in real time. The conventional approach of manually creating in-house
testing environments that fully mirror these complexities and multiplicities
 consume huge capital and resources.

 According to the Software Testing in the Cloud (STITC) [5], a special interest
group, there are three categories of Cloud testing as enumerated below:

 (a) Testing in the Cloud: Leveraging the resources provided by a Cloud computing
infrastructure to facilitate the concurrent execution of test cases in a virtualized
environment. Testing in the Cloud is about utilizing the Cloud for testing, such
as for confi guration testing and load testing.

 (b) Testing of the Cloud: Testing applications that are hosted and deployed in a
Cloud environment.

 (c) Migrating testing to the Cloud: Moving the testing process, test assets, and test
infrastructure from their current state to facilitate either testing in the Cloud or
testing of the Cloud.

 However, migrating testing to Cloud does not come without cost, nor is it neces-
sarily the best solution for all testing problems. The two perspectives that have to be
considered before migration of software testing to the Cloud are the characteristics
of an application under test and the types of testing performed on the application [6].

7.1.2 Benefi ts and Challenges of Cloud-Based Testing

 The benefi ts of Cloud-based testing can be enumerated as mentioned below
[7 – 10]:

 (a) Testing in the Cloud leverages the Cloud computing infrastructure reducing the
unit cost of computing, while increasing testing effectiveness.

 (b) Cloud-based testing service providers offer a standardized infrastructure and
pre-confi gured software images that are capable of reducing errors considerably.

 (c) The non-cost factors include utility like on-demand fl exibility, freedom from
holding assets, enhanced collaboration, greater levels of effi ciency, and, most
important, reduced time-to-market for key business applications.

 On-demand Cloud provisioning addresses the issues of software testing with one
click. Moreover, the effort and resources saved in the development and testing area
can be utilized for core business needs. Recent research from Fujitsu [11] (as shown
in Fig. 7.1) suggests that testing and application development rank second (57 %) as
the most likely workload to be put into the Cloud after Web sites (61 %). Although,

7 Testing Perspectives for Cloud-Based Applications

148

numerous benefi ts can be accounted for Cloud-based testing, following challenges
[6 , 12 – 14] also need to be addressed to fully exploit the benefi ts:

 (a) Lack of standards: There is no universal/standard solution to integrate public
Cloud resources with user companies’ classic data center. Cloud providers have
their own architecture, operating models, and pricing mechanisms and offer
 limited interoperability.

 (b) Security in the public Cloud: Security is currently addressed through encryption
techniques, which is not suffi cient.

 (c) Service Level Agreements (SLAs): There is no standard procedure to defi ne
terms and conditions of Cloud service providers. Existing procedures are gener-
ally not precise, misleading and biased toward the providers.

 (d) Infrastructure: Limited types of confi gurations, technology, servers and storage,
networking, and bandwidth are provided by some providers, which make it dif-
fi cult to create real-time test environments.

 (e) Usage: Usage is directly dependent on the estimations made by the users. Any
error in the estimates can lead to extra costs.

 (f) Planning: Planning is very crucial for the testing teams before migrating testing
in a Cloud as it will consume additional CPU and memory. Testing teams should
be aware of all the expenses like cost of encrypting data.

 (g) Performance: Service provider may suddenly announce disruption of service
due to a maintenance window or network outage, which can cause long waiting
time for the service users.

7.2 Cloud Applications Frameworks

 Computing paradigms have evolved from dummy terminals/mainframes to PCs,
network computing, to Grid and Cloud computing [15]. Cloud computing helps to
build a model for on-demand network access to a shared pool of computing resources

70

60

50

40

30

20

10

0

Web Site

Test and Development

E-mail and PC Applications

HR and Payroll

Finance and Accounting

 Fig. 7.1 Top application of Cloud [11]

I. Chana and P. Chawla

149

that requires minimal management effort or service provider interaction [16]. The
Cloud model as defi ned by NIST promotes availability and is composed of fi ve
essential characteristics, namely, on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service [17]. The building blocks of
Cloud computing are essential characteristics, service delivery models, deployment
models [17], and enabling technologies [18 , 19]. For Cloud applications, the
enabling technologies are the set of technological advances that made the appear-
ance of Cloud computing possible. The service delivery model identifi es the ser-
vices that are delivered on each implementation, while the deployment models
identify how those services are deployed. Essential characteristics and enabling
technologies are common to every Cloud service implementation, while the deliv-
ery and deployment models differentiate each one of the implementations.

7.2.1 Traditional Applications vs. Cloud-Based Applications

 Cloud computing environment is unlike a traditional environment in terms of appli-
cations deployment, confi guration, execution, and management. Traditional appli-
cations and Cloud-based applications differ considerably and have been compared
on the basis of type of users, multi-tenancy, security, etc., in Table 7.1 .

 Cloud applications can also be categorized on the basis of the degree of multi-
tenancy required for an application; multi-tenancy is enabled by the concept of vir-
tualization, which supports sharing of compute, storage, and network resources
among multiple clients. In a Cloud, a client (tenant) could be a user, a user group, or
an organization/company.

 Cloud-Hosted Applications : Cloud-hosted applications are the one that can be
executed on the Cloud. In Cloud-hosted applications, multi-tenancy is at the

 Table 7.1 Traditional apps vs. Cloud-based applications

 Parameters Traditional applications Cloud-based applications

 User base Known at design time May not be known and could be dynamic
 Multi-tenancy Not required Assumed
 Security Enforced by application

architecture
 Service contracts like WS-Security, SAML

provided by Cloud providers
 Deployment Only traditional tools Requires knowledge and utilization of vendor

specifi c Cloud API and tools
 Downtime Upgrades and enhancements

are associated with
downtime

 No downtime

 Infrastructure Structured and controlled Unstructured and is managed by Cloud fabric
 Components Components co-located in

same environment
 Components are mostly scattered around one

or many Clouds
 Testing In controlled environment Application (integration) is tested on the

Cloud to ensure seamless orchestration
between services on one or many Clouds

 User base Known at design time May not be known and could be dynamic

7 Testing Perspectives for Cloud-Based Applications

150

infrastructure layer, that is, only infrastructure would be shared by providers to
support multiple client applications, for example, Amazon EC2 and Rackspace.

 Cloud-Optimized Applications : Cloud-optimized applications are the one that
can leverage the Cloud to its fullest potential. These applications meet the strin-
gent requirements and deliver the maximum return on the Cloud investment. In
Cloud- optimized application multi-tenancy is supported at the different layers
like infrastructure, application, and database by leveraging a PaaS platform, for
example, Salesforce.com’s Force.com.

7.2.2 Traditional Software Testing vs. Cloud Testing

 Traditional software testing cannot be applied to test applications in a Cloud envi-
ronment as traditional software testing is designed for on-premise single-tenant
applications and cannot support multi-tenant applications. Traditional software test-
ing does not support new business requirements and risks that come with Cloud
environment. Test engineers that are trained to perform traditional software testing
need special training to perform testing in Cloud.

 New business needs and associated challenges should be properly understood
before migrating to Cloud environment in order to meet Cloud testing requirements.
Organizations need to be equipped with additional infrastructure such as different test-
ing skills required by test engineers to perform the job of testing in a Cloud [20 , 21].

 To identify the type of testing to be performed, an understanding of Cloud char-
acteristics and the risks/challenges involved is required. Right testing strategy
should be selected by addressing the following challenges:

• Quality risks of Cloud computing such as reliability, fl exibility, multi-tenancy,
self-healing, pricing band on SLA’s and location independence.

• Inherited risks associated with Cloud computing like data governance, data secu-
rity, virtualization security, reliability, monitoring, and manageability.

• Applicable Cloud models to be tested like Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS).

 Cloud testing exemplifi es testing on demand and is perceived as future of testing
services. The following testing types are performed in general for Cloud testing:

• System Integration Testing/User Acceptance Testing: The Cloud platform must
be integrated with all platforms and infrastructure services so that a user can
build up his data online.

• Interoperability Testing: Interoperability refers to moving Cloud applications
from one infrastructure to another Cloud infrastructure. Any application on
Cloud must have the ability to be operated on multiple platforms and environ-
ments. It should be able to get executed across any Cloud platform.

• Performance Testing/Load Testing: Elasticity refers to using minimum resources
and producing maximum usage for end users. The performance of Cloud should
remain intact even if there are increasing infl ows of requests.

I. Chana and P. Chawla

151

• Stress Testing/Recovery testing: In case a failure occurs, disaster recovery time
should be as less as possible. Services must be retrieved online with minimum
adverse effects on client’s business.

• Security Testing: Unauthorized access to data must be strictly prohibited. Shared
data integrity and security must be maintained all times as client trusts the Cloud
platform for securing his information.

 The infrastructure requirement for test environment is another important consid-
eration for Cloud testing. The two possible options for choosing the right test envi-
ronment are:

• Simulating in-house Cloud test environment
• Choosing the right Cloud service provider

 Apart from identifying applicable testing types, testing team must also focus on
the specifi c requirements of the application to be tested because of being in a Cloud
environment (as enumerated below):

• Supporting multiple browsers
• User session management related issues
• Test against security vulnerabilities
• In a multi-tenant environment, restricting users to access their data only
• Test engineer’s skill

7.2.3 Applications Suitable for Cloud

 Classes of applications that can be benefi ted with Cloud computing and contribute
further to its momentum are:

 (a) Mobile interactive applications: These applications reside on the mobile device,
which connects all organizations to all types of consumers and employees.
They are highly available and generally rely on large data sets that are most
conveniently hosted in large data centers. Such applications respond to infor-
mation provided either by their users or by nonhuman sensors in real time [22].

 (b) Parallel batch processing: Batch processing is execution of programs in some
specifi ed sequence on a computer without manual intervention. Parallel pro-
cessing is use of more than one CPU or processor core to execute a program at
the same time. Parallel batch processing is the execution of programs using
more than one CPU or processor core to make the execution faster. Cloud com-
puting is very useful for batch processing and analytics jobs that analyze tera-
bytes of data and can take hours to fi nish. By making application that is equipped
with enough data parallelism one can take care of using hundreds of computers
for short time costs. For example, Peter Harkins, a Senior Engineer at The
Washington Post, used 200 EC2 instances (1,407 server hours) to convert
17,481 pages of Hillary Clinton’s travel documents into a form more friendly to
use on the WWW within 9 h after they were released [23]. Programming

7 Testing Perspectives for Cloud-Based Applications

152

abstractions such as Google’s MapReduce [24] and its open-source counterpart
Hadoop [25] allow programmers to express such tasks while hiding the opera-
tional complexity of choreographing parallel execution across hundreds of
Cloud computing servers.

 (c) Business analytics: It is a special case of compute-intensive batch processing
which is expending large share of computing resources to understand custom-
ers, supply chains, buying habits, ranking, and so on. Hence, while online trans-
action volumes will continue to grow slowly, decision support is growing
rapidly, shifting the resource balance in database processing from transactions
to business analytics.

 (d) Extension of compute-intensive desktop applications: Cloud computing is
being used to extend the basic versions of the mathematics software packages
 MATLAB and Mathematica to perform expensive evaluations. For example,
symbolic mathematics involves large amount of computing per unit of data. An
interesting alternative model might be to keep the data in the Cloud and rely on
having suffi cient bandwidth to enable suitable visualization and a responsive
GUI back to the human user.

 (e) Web Applications: Web applications are the applications that can be accessed
from anywhere via the Web browser. Web application development through
Cloud computing provides cost-effective solution to provide specialized ser-
vices to customers without having to build, maintain, or host the applications.
Businesses can depend on Cloud service providers to collect, maintain, and
store their data. For example, multitiered Web applications like RUBiS [26] and
Media Wiki [27] can also be ported to Cloud platform [28].

 (f) Scientifi c Workfl ow Applications: Scientifi c workfl ow applications can be exe-
cuted effi ciently over utility computing platforms such as Amazon Elastic
Compute Cloud, Google App Engine and academic Cloud like Nimbus Science.
A few examples of scientifi c workfl ow applications are now listed below:

• In astronomy, scientists are using workfl ows to generate science-grade
mosaics of the sky [29], to examine the structure of galaxies to understand
the structure of the universe [30].

• In bioinformatics, workfl ows are used to understand the underpinnings of
complex diseases [31 , 32].

• In earthquake science, workfl ows are used to predict the magnitude of earth-
quakes within a geographic area over a period of time [33].

• In physics, workfl ows are used to try to measure gravitational waves [34]
and model the structure of atoms [35].

7.2.4 Cloud Application Architecture and Process Models

 Cloud application development is different from traditional application development,
as for the development of Cloud-based applications, architectural, and operational
considerations should be taken into account [36].

I. Chana and P. Chawla

153

 Software application architecture involves the process of defi ning a structured
solution that meets all of the technical and operational requirements. It concerns
with a series of decisions based on a wide range of factors, and each of these deci-
sions can have considerable impact on the quality, performance, maintainability,
and overall success of the application. Application architecture seeks to build a
bridge between business requirements and technical requirements by understanding
use cases and then fi nding ways to implement those use cases in the software.

 A good design is suffi ciently fl exible to be able to handle the natural drift that
will occur over time in hardware and software technology, as well as in user sce-
narios and requirements. To fully attain architectural goals, structure of the system
can be fully exposed, hiding the implementation details, and thus should be able to
realize all user cases and scenarios. Architecture of Cloud-based application must
possess the following attributes:

 (a) Support for service-based model: Once an application is deployed, it needs to
be maintained. In the past this meant using servers that could be repaired with-
out or with minimal downtime. Today it means that an application’s underlying
infrastructure components can be updated or even replaced without disrupting
its characteristics including availability and security.

 (b) Incorporating elasticity to dynamically scale and support large number of users:
Applications designed for Cloud computing need to scale with workload
demands so that performance and compliance with service levels remain on tar-
get. In order to achieve this, applications and their data must be loosely coupled
to maximize scalability. The term elastic often applies to scaling Cloud applica-
tions because they must be ready to not only scale up but also scale down as
workloads diminish in order to not run up the cost of deploying in the Cloud.

 (c) Supporting parallel processing: Reliability, in today’s arena, means that appli-
cations do not fail and most importantly they do not lose data. The way that
architecture addresses this characteristic today is to design applications so that
they continue to operate and their data remains intact despite the failure of one
or more of the servers or virtual machines onto which they are decomposed.

 (d) Support for multi-tenancy: The single-tenant model has a separate, logical
instance of the application for each customer, while the multi-tenant model has
a single logical instance of the application shared by many customers. It’s
important to note that the multi-tenant model still offers separate views of the
application’s data to its users.

 (e) Security of data: Applications need to provide access only to authorized,
authenticated users, and those users should be able to trust that their data is
secure. Security in today’s environments is established using strong authentica-
tion, authorization, and accounting procedures, establishing security of data at
rest and in transit, locking down networks, and hardening operating systems,
middleware, and application software.

 (f) Cloud orchestration: Cloud orchestration involves interconnecting processes
running across heterogeneous systems in multiple locations. Its main purpose is
to automate the confi guration, coordination and management of software and

7 Testing Perspectives for Cloud-Based Applications

154

software interactions. Tasks involved include managing server runtimes, directing
the fl ow of processes among applications and dealing with exceptions to typical
workfl ows. Vendors of Cloud orchestration products include Eucalyptus,
Flexiant, IBM, Microsoft, VMware, and V3 Systems.

 (g) Persistent software licensing issues: The different types of license models are
pay-as-you-go, subscription-based licenses, licenses based on number of users,
and Bring Your Own Software and License (BYOSL). For example, Amazon’s
software license models in the Cloud are often pay-as-you-go and/or subscription-
based licenses. Salesforce.com charges according to the number of users on a
subscription basis. Microsoft has created dedicated software license models for
Cloud service providers based on Processor License (PL) or Subscriber Access
License (SAL), which is based on the number of end users connected. Both of
these are licensed on a monthly basis to service providers.

 Process model used for developing Cloud-based application should be chosen
appropriately so as to enhance the benefi ts of Cloud computing like fl exibility,
availability, and adaptability and assisting the testing of Cloud apps. Let us have a
look on the most popular process models adopted by the software development
companies and fi nd out which process models support the above discussed features
and requirements of Cloud-based application development.

 Agile Methodology : In an agile paradigm, every phase of development – requirements,
design, etc. – is continually revisited throughout the life cycle. It gives more
importance to customers, collaborations over contracts, and working software over
documentation and responds to changes at any time during the development. The
results of this approach lead to reduction in both development costs and time-to-
market. Team’s work cycle is limited to 2 weeks; customer involvement is given the
highest priority at each phase, which results in the development of right product as
per the requirements of the customers. Widely used agile processes in Cloud appli-
cation development are Scrum and Extreme Programming (XP).

 Waterfall Model : In this model, development of software occurs just like a waterfall
from one phase to other in a downward fashion. Various phases of the software
development like requirements and analysis and design become sequential phases.
Each and every phase is highly dependent on the document exchange between the
phases. This process model is good for repetitive work, but not for Cloud-based
application development because of the risks associated that increase with time.

 Iterative Model: In an iterative process, various phases of software development like
requirements and analysis and design are distributed within iterations, which occur in a
sequential manner and are often combined into phases. This process model is good for
exploratory work and risk associated is less. Widely used iterative process models are
IBM’s Rational Unifi ed Process (RUP) and Eclipse’s Open Unifi ed Process (OpenUP).

 Out of these three models, agile methodology is the most preferred process model for
Cloud-based application development as it can facilitate quick discovery and assem-
bly of resources and services available within the Cloud in order to build a software
application and thus help in easy development and testing of software applications.

I. Chana and P. Chawla

155

7.2.5 Cloud Application Development and Testing Platforms

 A Platform is very important element for application development and deployment,
which includes hardware architecture, and a software framework that facilitates
developers to build, deploy, and manage custom applications. This feature applies
to the traditionally licensed platforms and platforms that are provided as a service.
Earlier vendors like IBM, Microsoft, and Oracle provided platform products through
a traditional on-premise licensing model, but nowadays they are moving toward
delivery of Platforms as a Service (PaaS). Vendors like Google and Salesforce.com
provide computing resources as services.

 Cloud-based application development and testing platforms provide highly reli-
able, scalable, and low-cost infrastructure platform by which users can build, deploy,
test, and manage applications with great ease. Applications can be built using any
language; tool or framework and public Cloud applications can be integrated with
existing IT environment. There is also no need to maintain servers.

 Cloud computing platforms not only provide its users with various innovative
technologies but also offer lucrative businesses to its investors. Today, these plat-
forms have successfully been able to build up, customize, and deploy applications
befi tting user’s requirements exactly.

 Cloud-based application testing platforms mainly facilitate unit testing and load/
performance testing. During software development process, unit testing allows test-
ing of small and reusable modules of code. Unit testing framework works as a test
runner, runs user’s test binary, track progress via a progress bar, and displays a list
of test failures [Google Test].

 Load testing is the process of putting demand on a system or device and measur-
ing its response. It is performed to determine a system’s functional behavior and
performance under both normal and anticipated peak load conditions. Load testing
frameworks build tests by simulating large number of virtual visitors, each with
their own unique user name/login and task.

 Currently there are many Cloud-based application development and testing plat-
forms such as Google, Microsoft, Amazon, Rackspace, Right Scale, EngineYard
Cloud, Terremark Worldwide, Enki, and XCalibre Flexi Scale [37 – 45].

 In the next section, we discuss the current academic research in the area of
Cloud-based testing and various testing techniques focused by the researchers.

7.3 Cloud-Based Testing Models: State of the Art

 Cloud-based testing can be divided into seven categories based upon the type of
research models [17]. Following testing techniques are currently being used for test-
ing in Cloud environment. A comparative analysis of these techniques is presented
in Table 7.2 .

 Virtualization-Aware Automated Testing Service (VATS) : VATS is a framework that
facilitates automated performance testing and confi guration of services in Cloud

7 Testing Perspectives for Cloud-Based Applications

156

computing environments. It executes tests, manipulates virtualized infrastructure,
and collects performance information. VATS complements a Service Lifecycle
Management system named SLiM. SLiM is a model-driven service for managing the
confi guration, deployment, and runtime management of services operating in Clouds.
VATS works with SLiM and supports the testing of other services that are compatible
with SLiM. VATS uses HP LoadRunner as a load generator and provides the founda-
tion for an automatic performance evaluator for Cloud environments.

 York Extensible Testing Infrastructure (YETI): The York Extensible Testing
Infrastructure (YETI) is Cloud enabled automated random testing tool with the abil-
ity to test programs written in different programming languages [8]. While YETI is
one of the fastest random testing tools with over a million method calls per minute
on fast code, testing large programs or slow code – such as libraries using inten-
sively the memory – might benefi t from parallel executions of testing sessions. It
relies on the Hadoop package, and it does map/reduce implementation to distribute

 Table 7.2 Comparison chart of Cloud-based testing models

 Techniques/
parameters SUT

 Virtualization
technology Benefi ts

 VATS SAP/R3 System Xen Improved service
performance

 D-Cloud Distributed/parallel QEMU;
Eucalyptus

 Cost and time

 Yeti Java.lang,iText Hadoop;
Amazon EC2

 Test execution speedup

 AST Communication Virtual
Machine (CVM)

 Microsoft
Windows
Server 2008;
R2 operating
system

 Fault detection from the
interaction between
services

 PreFail HDFS Cassandra;
Zookeeper

 Reduced testing time

 NMS Simulation of
large-scale
networks

 Amazon EC2 Less expensive and more
scalable
implementation

 FATE and DESTINI HDFS – Build robust, recoverable
systems

 LSTS Symbian S60 – Easy to deploy; tester’s
task minimized

 TSaaS – – Elastic resource infrastruc-
ture; provides various
kind of testing services
to users

 Bare-Bone – – Conduct analysis on Cloud
composition and
detection of anomalies

 Cloud9 UNIX utilities Eucalyptus;
Amazon EC2

 On-demand software
testing service;
speedup

I. Chana and P. Chawla

157

tasks over potentially many computers. Cloud version of YETI can be distributed
over Amazon’s Elastic Compute Cloud (EC2).

 Model-Based Testing Using Symbolic Execution : Symbolic execution [46] is a fully
automatic technique for generating test case to achieve high testing coverage. It is
performed by executing programs with symbolic, rather than concrete inputs. The
paths followed during symbolic execution form a symbolic execution tree, represent-
ing all the possible executions through the program. However, exploring all the
possible program executions is generally infeasible, thus restricting the application
of symbolic execution in practice. Scalability of symbolic execution can be addressed
through parallelization as done in Cloud9 [14 , 47 , 48]. Cloud9, an automated testing
platform that employs parallelization to scale symbolic execution by harnessing the
resources of commodity clusters. Cloud9 helps cope with path explosion. It can auto-
matically test real systems. Doing so without Cloud9 is hard, because single computers
with enough CPU and memory to symbolically execute large systems either do not
exist today or are prohibitively expensive. Besides single- threaded single node
systems, Cloud9 also handles multi-threaded and distributed software, and it
provides an easy-to-use API for writing “symbolic tests.” Developers can specify
concisely families of inputs and environment behaviors for which to test the target
software, without having to understand how symbolic execution works.

 D-Cloud : It is a software testing environment for dependable, parallel, and distrib-
uted systems using the Cloud computing technology, namely, D-Cloud. D-Cloud
includes Eucalyptus as the Cloud management software and FaultVM based on
QEMU as the virtualization software and D-Cloud front end for interpreting test
scenario. D-Cloud enables not only to automate the system confi guration and the
test procedure but also to perform a number of test cases simultaneously and to
emulate hardware faults fl exibly.

 Autonomic Self-Testing (AST): It is based on the concepts of autonomic computing
to software testing of adaptive systems which is called as autonomic self-testing
(AST). It deploys test managers throughout the software to validate dynamic adap-
tations and updates. AST is designed with fl exible strategies for incorporating the
approach into systems with different performance and availability requirements. It
supports replication with validation strategy that can provide a highly transparent
runtime testing process in distributed environments. AST is supplemented with
 TSaaS that allows testing to cross administrative boundaries in the Cloud [48].

 Cloud-Based Performance Testing of Network Management Systems : It is a method
for NMS performance testing, which is based on off-the-shelf “Infrastructure- as-a-
Service” Cloud computing service. The method involves preparing and storing
images of managed elements on the Cloud which can be run later in large numbers
using the Cloud computing service in order to simulate large-scale networks for
NMS testing purposes. It is used to test distributed system that consists of thousands
of VoIP private branch exchange (PBX) networked through SIP. Emulation agents
have been used instead of recorded HTTP(S) traffi c, which have many advantages
like writing application level test cases instead of low-level scripts, emulation of
element-specifi c business logic, and fl exibility in the communication protocols [49].

7 Testing Perspectives for Cloud-Based Applications

158

 Model-Based Testing Using Bare-Bone Cloud: Bare-Bone Cloud is a directed graph
of providers and consumers in which computing resource such as services or intel-
lectual property access rights acts as an attribute of a graph node, and the use of a
resource as a predicate on an edge of the graph. Author has proposed algorithms
to compose Cloud computations and a family of model-based testing criteria to
support the testing of Cloud applications [50].

 Test-Support as a Service (TSaaS): TSaaS is a new model to provide testing capa-
bilities to end users. Scheduling and dispatching algorithms are developed to
improve the utilization of computing resources. Authors evaluate the scalability of
the platform by increasing the test task load, analyze the distribution of computing
time on test task scheduling and test task processing over the Cloud, and examine
the performance of proposed algorithms [50].

 Model-Based Testing Service Using Labeled State Transition Systems (LSTSs): It is
a model-based GUI testing service for Symbian S60. The server encapsulates the
domain-specifi c test models and the associated test generation heuristics. The testers,
or test execution specialists, order tests from the server, and the test adapter clients
connect to the phone targets under test. It is easy to deploy in industrial environ-
ments; in practice, the tasks of the tester are minimized to specifying the coverage
requirement [51].

 PreFail: It is a programmable failure injection tool that supports failure abstractions
and executions profi les that helps testers to write policies to prune down large spaces
of multiple-failure combinations. It facilitates the automatic sorting of failed experi-
ments depending upon the bugs that caused them and parallelization of test work-
fl ow for further speedup. PreFail has been integrated to three Cloud software
systems like HDFS, Cassandra, and Zookeeper [52].

 FATE and DESTINI: It is testing framework which has been integrated to several
Cloud systems like HDFS, for Cloud recovery which consists of different modules:
Failure Testing Service and DESTINI (Declarative Testing Specifi cations). FATE
facilitates systematic multiple-failure testing of recovery, whereas DESTINI speci-
fi es the way to recover from failures [18].

7.3.1 Limitations of the Existing Models

 Various Cloud testing techniques have been proposed that mainly focus on auto-
matic test case generation [8 – 10 , 14 , 47 , 48 , 53], runtime virtualization [8 , 14 , 48 , 51 ,
 53], checking interoperability of multiple application level services [48], etc., but
still there is a need to increase the overall testability of Cloud applications and provi-
sion of metrics related to test set size and breakdown, item pass/fail results, and code
coverage which may act as a measure of confi dence in the hosted service.

 Potential providers of Cloud have so far been focused on fl exibility; cost-
effectiveness [12]; easy obtain ability, on-demand access [12 , 13 , 54 – 57]; dynamicity,

I. Chana and P. Chawla

159

scalability, security [36]; and provision of testing service across multiple browsers
in the Cloud [58]. However, quality checks for applications that have been tested on
the Internet have not been addressed yet.

 Pricing models and service description for online software testing services need
to be well elaborated so that customers are well informed and able to estimate costs.
In order to achieve transparent pricing models, different factors and metrics should
be considered while calculating the value of a Cloud-based testing service.
Therefore, transparent pricing models based on appropriate metrics and different
factors should be designed [6 , 10 , 14 , 48 , 53].

 Testing vendors and customers interested in testing in the Cloud would want to
be aware of the characteristics of an application like test case dependency and the
operating environment under test and the types of testing that can be performed on
the application [6].

 The transformation of Capital Expenditure Model (Cap-Ex) to Operating
Expenditure Model (Op-Ex) has not been yet fully achieved. Therefore, there is a
need to shift to a fl exible Op-Ex to avail the benefi ts of Cloud computing like cost
reduction, on-demand fl exibility, freedom from holding assets, enhanced collabora-
tion, greater levels of effi ciency, and reduced time-to-market for key business appli-
cations [4 , 11].

 As we have observed that various researchers have worked on automation Cloud-
based testing, so we will discuss the need and importance of automatic test case
generation and various existing automated testing frameworks in the next section.

7.4 Automatic Test Case Generation

 Software testing can be roughly divided into automated and manual testing.
Automated software testing implies automation of software testing activities and
tasks [59]. Increased automation of the testing process supports a more continuous
approach to software quality. These activities include the development and execution
of test scripts, the verifi cation of testing requirements, and the use of automated test
tools. Testing a software product forms a considerable expense, but so do the costs
caused by faults in the software product. By automating at least some of test process
phases and directing available resources toward additional testing can result in gains
[60]. Most of the test cases in one project are executed at least fi ve times, and one-
fourth over 20 times [61]. For example, smoke tests, component tests, and integration
tests are repeated constantly, so there is a dire need for automation development.

 Test automation is a signifi cant area of interest in current testing research, with
the aim to improve the degree of automation, either by developing advanced tech-
niques for generating test inputs or by fi nding support procedures to automate the
testing process itself [62]. The main benefi ts of test automation are quality improve-
ment, the possibility to execute more tests in less time and fl uent reuse of testware.
The major disadvantages are the costs associated with developing test automation
especially in dynamic customized environments. Optimal case for automated

7 Testing Perspectives for Cloud-Based Applications

160

software testing would be a standardized product with a stable, consistent platform
and cases that yield unambiguous results which can be verifi ed with minimal human
intervention [59].

 Nowadays, complexity of applications further increases due to adoption of tech-
nologies like Cloud or Big Data, which results in insuffi cient test coverage by the
existing traditional automation strategies. Hence, there is a need to defi ne an effec-
tive Test Automation strategy that focuses on maintenance of test scripts and the
learning curve associated with it along with improved test coverage.

 Following are some of most popular existing automation frameworks used in
distributed environment:

 JAT: It is a test automation framework for Multi-Agent Systems based upon aspect-
oriented techniques and is implemented using the agent platform JADE. It has
very high fault detection effectiveness [63].

 HadoopUnit: It is distributed execution framework which is built upon Hadoop for
JUnit test cases for creation and execution of JUnit test cases. It is very useful for
data-intensive application testing and has shown reduction in the test execution
time when tested experimentally [64].

 STAF (Software Testing Automation Framework): It is multi-platform, multi-
language approach based on the concept of reusable services that can be used to
automate major activities in the testing process [65].

 Test Automation in Agile Projects : It is an established fact that automated testing
facilitates change and delivers working software in agile. Practices such as Test-
Driven Design or Test-Driven Development as well as Continuous Integration
are all complemented by the automated tests. Impetus believes that the need for
automation is refl ected in the agile principles. Organizations must incorporate
the following key attributes into their automation strategy [66]:

• Testing across multiple levels to ensure optimum test coverage and save time
and costs.

• Regular updating of storyboards to include acceptance tests before automation.
• Knowledge of appropriate automation tools to match up with changing

requirements, which changes with time.
• Making of system in iterations, which helps customers, has more control over

the system and measurement of automation scripts.
• Exchange of ideas, plans, or problems through sprint planning by the whole

team to facilitate required automation at all the levels.
• Continuous Integration to ensure code links and compiles correctly.

7.5 Future Research Directions

 Organizations use testing in the Cloud to overcome their limitations of testing infra-
structure. They are then able to test traditional/on-premise resident applications
over the Clouds. There is no distinct or ideal approach for Cloud testing. This is

I. Chana and P. Chawla

161

primarily due to the fact that when an organization uses Cloud testing, various
factors like the Cloud architecture design, and non-functional and compliance
requirements need to be taken into account to ensure successful and complete test-
ing. Cloud infrastructure for setting up test environment can be very useful in the
scenario where there is requirement of distributed servers and distributed load gen-
erators. Setting up actual test infrastructure in different geographic locations can be
very diffi cult, time-consuming, and expensive, but in case of Cloud this would be
very quick and less expensive. Also, number of load generators required for testing
can be easily increased and decreased in case of Cloud, which otherwise becomes
diffi cult in case of in-house test environment.

 Cloud computing can provide online access to testing infrastructure with quality
attributes like availability, reliability, security, performance, scalability, and elastic-
ity. There is a need to migrate software testing to Cloud owing to reasons like para-
digm shift in the provision and use of computing services, reduction in cost of
software development, shorter development cycles, fl exibility, on-demand basis,
and access to global markets for both providers and customers. Furthermore, online
software testing is required to support agile development methods by providing
continuous testing services. Largely the companies are providing performance test-
ing, functional testing, and unit testing as Cloud test services but, very few compa-
nies are providing security testing, recovery testing, and fault-tolerance testing.
There has not been much progress by the academia also in the Cloud-based testing
techniques especially in security testing, fault-tolerance, and recovery testing. There
is also lack of standards in test tools and their connectivity and interoperability to
support Test-Support as a Service (TSaaS).

 Furthermore, pricing models and service description for online software testing
services need to be well elaborated so that customers are well informed and able to
estimate costs. Transparent pricing models based on appropriate metrics and differ-
ent factors need to be designed. In future it can be concluded that though initial
steps have been taken, but much more effort needs to be accomplished in order to
facilitate Cloud-based software Test-Support as a Service.

 References

 1. Harrold, M.J.: Testing: a roadmap. In: Proceedings of the Conference on the Future of Software
Engineering, ICSE’00, pp. 61–72. ACM, New York (2000)

 2. IEEE Computer Society: IEEE Standard Glossary of Software Engineering Terminology.
Technical Report. IEEE, New York (1990)

 3. Ahamad, S.: Studying the feasibility and importance of software testing: an analysis. ETRI J.
 1 (3), 119–128 (2009)

 4. Cognizant: Taking Testing to the Cloud. Cognizant Whitepaper. http://www.cognizant.com/
InsightsWhitepapers/Taking-Testing-to-the-Cloud.pdf (2012). Accessed May 2012

 5. Software Testing in the Cloud (STITC). http://www.stitc.org/
 6. Parveen, T., Tilley, S.: When to migrate software testing to the Cloud? In: Proceedings of the

2010 Third International Conference on Software Testing, Verifi cation, and Validation
Workshops, ICSTW’10, pp. 424–427. IEEE Computer Society, Washington, DC (2010)

7 Testing Perspectives for Cloud-Based Applications

http://www.cognizant.com/InsightsWhitepapers/Taking-Testing-to-the-Cloud.pdf
http://www.cognizant.com/InsightsWhitepapers/Taking-Testing-to-the-Cloud.pdf
http://www.stitc.org/

162

 7. Gaisbauer, S., Kirschnick, J., Edwards, N., Rolia, J.: VATS: Virtualized-Aware Automated Test
Service. In: Quantitative Evaluation of Systems, 2008. QEST’08. Fifth International
Conference,] pp. 93–102, IEEE St Malo, France, September 2008

 8. Oriol, M., Ullah, F.: Yeti on the Cloud. In: 2010 Third International Conference on Software
Testing, Verifi cation, and Validation Workshops (ICSTW), pp. 434–437, IEEE Paris, France,
April 2010

 9. Candea, G., Bucur, S., Zamfi r, C.: Automated software testing as a service. In: Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC’10, pp. 155–160. ACM, New York (2010)

 10. Ciortea, L., Zamfi r, C., Bucur, S., Chipounov, V., Candea, G.: Cloud9: A software testing service.
SIGOPS Oper. Syst. Rev. 43 , 5–10 (2010)

 11. Fujitsu: Confi dence in Cloud Grows, Paving Way for New Levels of Business Effi ciency.
Fujitsu Press Release, November 2010. http://www.fujitsu.com/uk/news/ (2010). Accessed
May 2012

 12. Sogeti: STaaS – Software Testing as a Service. Sogeti Cloud Testing Tool, September 2011
 http://www.sogeti.com/looking-for-solutions/Services/Software-Control-Testing/STaaS-/
(2011). Accessed May 2012

 13. IBM: CloudBurst: Cloud Testing Tool. http://www-304.ibm.com/ . Accessed May 2012
 14. Banzai, T., Koizumi, H., Kanbayashi, R., Imada, T., Hanawa, T., Sato, M.: D-Cloud: design of

a software testing environment for reliable distributed systems using Cloud computing tech-
nology. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, CCGRID’10, pp. 631–636. IEEE Computer Society, Washington,
DC (2010)

 15. Voas, J., Zhang, J.: Cloud computing: new wine or just a new bottle? IT Prof. 11 (2), 15–17 (2009)
 16. Mell, P., Grance, T.: NIST Defi nition of Cloud Computing. National Institute of Standards and

Technology, 7 October 2009. www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf (2009)
 17. Priyanka, C.I., Rana, A.: Empirical evaluation of cloud-based testing techniques: a systematic

review. SIGSOFT Softw. Eng. Notes 37 (3), 1–9 (2012). doi: 10.1145/180921.2180938 http://
doi.acm.org/10.1145/180921.2180938

 18. Gunawi, H.S., Do, T., Joshi, P., Alvaro, P., Yun, J., Hellerstein, J.M., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H., Sen, K., Borthakur, D.: FATE and DESTINI: a framework for Cloud
recovery testing. EECS Department, University of California, Berkeley, Tech. Rep. UCB/
EECS-2010-127, Sept 2010. http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-
127.html (2010)

 19. Jin, H., Ibrahim, S., Qi, L., Cao, H., Wu, S., Shi, X.: Tools and technologies for building
Clouds. In: Antonopoulos, N., Gillam, L. (eds.) Cloud Computing: Principles, Systems and
Applications, pp. 3–20. Springer, London (2010)

 20. AppLabs: Approach to Cloud Testing. Applabs Whitepaper. http://www.applabs.com/html/ .
Accessed May 2012

 21. Ghag, S.: Software Validations of Application Deployed on Windows Azure. Infosys
Whitepaper. www.infosys.com/cloud/ . Accessed May 2012

 22. Siegele, L.: Let it rise: a special report on corporate IT. The Economist. www.economist.com/
node/12411882 (2008)

 23. Washington Post Case Study: Amazon Web Services. http://aws.amazon.com/solutions/
case- studies/washington-post/

 24. Dean, J., Ghemawat, S.: Map reduce: Simplifi ed data processing on large clusters. In: OSDI’04:
Proceedings of the 6th Conference on Symposium on Operating Systems Design &
Implementation, pp. 10–10. USENIX, Berkeley (2004)

 25. Bialecki, A., Cafarella, M., Cutting, D., O’Malley, O.: Hadoop: a framework for running appli-
cations on large clusters built of commodity hardware. http://lucene.apache.org/hadoop (2005)

 26. RUBiS: Rice University Bidding System. http://rubis.ow2.org/index.html . Accessed
May 2012

 27. MediaWiki: http://www.mediawiki.org . Accessed May 2012
 28. Li, A., Zong, X., Zhang, M., Kandula, S., Yang, X.: CloudProphet: towards application perfor-

mance prediction in Cloud. ACM SIGCOMM Comput. Commun. Rev. SIGCOMM ‘11 41 (4),
426–427 (2011)

I. Chana and P. Chawla

http://www.fujitsu.com/uk/news/
http://www.sogeti.com/looking-for-solutions/Services/Software-Control-Testing/STaaS-/
http://www-304.ibm.com/
http://dx.doi.org/www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
http://dx.doi.org/10.1145/180921.2180938http://doi.acm.org/10.1145/180921.2180938
http://dx.doi.org/10.1145/180921.2180938http://doi.acm.org/10.1145/180921.2180938
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-127.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-127.html
http://www.applabs.com/html/
http://www.infosys.com/cloud/
http://dx.doi.org/www.economist.com/node/12411882
http://dx.doi.org/www.economist.com/node/12411882
http://aws.amazon.com/solutions/case-studies/washington-post/
http://aws.amazon.com/solutions/case-studies/washington-post/
http://lucene.apache.org/hadoop
http://rubis.ow2.org/index.html
http://www.mediawiki.org/

163

 29. Montage: http://montage.ipac.caltech.edu
 30. Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.): Workfl ows in e-Science. Springer,

London (2006)
 31. Stevens, R.D., Robinson, A.J., Goble, C.A.: MyGrid: personalised bioinformatics on the infor-

mation grid. In: Bioinformatics (11th International Conference on Intelligent Systems for
Molecular Biology) 19 , i302–i304 (2003)

 32. Oinn, T., Li, P., Kell, D.B., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens, R., Turi,
D., Zhao, J.: Taverna MyGrid: aligning a workfl ow system with the life sciences community.
In: Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.) Workfl ows in e-Science. Springer,
New York (2006)

 33. Deelman, E., Callaghan, S., Field, E., Francoeur, H., Graves, R., Gupta, N., Gupta, V., Jordan,
T.H., Kesselman, C., Maechling, P., Mehringer, J., Mehta, G., Okaya, D., Vahi, K., Zhao, L.:
Managing large-scale workfl ow execution from resource provisioning to provenance tracking:
the CyberShake example. In: E-SCIENCE ‘06: Proceedings of the 2nd IEEE International
Conference on e-Science and Grid Computing, p. 14, IEEE Washington, DC (2006)

 34. Brown, D.A., Brady, P.R., Dietz, A., Cao, J., Johnson, B.A., McNabb, J.: A case study on the
use of workfl ow technologies for scientifi c analysis: gravitational wave data analysis. In:
Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.) Workfl ows for e-Science. Springer,
New York (2006)

 35. Piccoli, L.: Lattice QCD workfl ows: a case study. In SWBES08: Challenging Issues in
Workfl ow Applications, Indianapolis, IN (2008)

 36. Sun Microsystems: Introduction to Cloud Computing Architecture. Sun Microsystems
Whitepaper. eresearch.wiki.otago.ac.nz/images/7/75/Cloudcomputing.pdf . Accessed May
2012.

 37. Google AppEngine. http://developers.google.com/AppEngine . Accessed May 2012
 38. Amazon Web Services: aws.amazon.com/ . Accessed May 2012
 39. Microsoft Azure: www.windowsazure.com . Accessed May 2012
 40. Enki: http://www.enki.co/ . Accessed May 2012
 41. XCalibre FlexiScale: www.fl exiscale.com . Accessed May 2012
 42. RackSpace: www.rackspace.com . Accessed May 2012
 43. RightScale: www.rightscale.com/ . Accessed May 2012
 44. Terremark Worldwide: www.terremark.com . Accessed May 2012
 45. Engine Yard Cloud: www.engineyard.com . Accessed May 2012
 46. King, J.C.: Symbolic execution and program testing. ACM Commun. 19 , 385–394 (1976)
 47. Bucur, S., Ureche, V., Zamfi r, C., Candea, G.: Parallel symbolic execution for automated real-

world software testing. In: Proceedings of the Sixth Conference on Computer systems,
EuroSys’11, pp. 183–198. ACM, New York (2011)

 48. King, T.M., Ganti, A.S.: Migrating autonomic self-testing to the Cloud. In: Proceedings of the
2010 Third International Conference on Software Testing, Verifi cation, and Validation
Workshops, ICSTW’10, pp. 438–443. IEEE Computer Society, Washington, DC (2010)

 49. Ganon, Z., Zilbershtein, I.E.: Cloud-based performance testing of network management sys-
tems. In: Computer Aided Modeling and Design of Communication Links and Networks,
2009. CAMAD’09, IEEE 14th International Workshop, pp. 1–6. IEEE Germany (2009)

 50. Yu, L., Tsai, W., Chen, X., Liu, L., Zhao, Y., Tang, L., Zhao, W.: Testing as a service over
Cloud. In: 2010 Fifth IEEE International Symposium on Service Oriented System Engineering,
pp. 181–188. IEEE Nanjing, China (2010)

 51. Jaaskelainen, A., Katara, M., Kervinen, A., Heiskanen, H., Maunumaa, M., Tuula, P.: Model-
based testing service on the web. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.)
Testing of Software and Communicating Systems. Lecture Notes in Computer Science.
Springer, Berlin/Heidelberg (2008)

 52. Joshi, P., Gunawi, H.S., Sen, K.: PreFail: a programmable tool for multiple-failure injection.
In: Proceedings of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, pp. 171–188. ACM Portland (2011)

7 Testing Perspectives for Cloud-Based Applications

http://montage.ipac.caltech.edu/
http://eresearch.wiki.otago.ac.nz/images/7/75/Cloudcomputing.pdf
http://developers.google.com/AppEngine
http://aws.amazon.com/
http://www.windowsazure.com/
http://www.enki.co/
http://www.flexiscale.com/
http://www.rackspace.com/
http://www.rightscale.com/
http://www.terremark.com/
http://www.engineyard.com/

164

 53. Das, D., Vaidya, K.: Taking Testing to the Cloud. CSC Whitepaper. http://assets1.csc.com/lef/
downloads/CSC_Papers_2011_Agile_Process_Framework.pdf . Accessed May 2012

 54. Zephyr: Zephyr Cloud Testing Tool, September 2011. http://Zephyr.com/ (2011). Accessed
May 2012

 55. Skytap: SkyTap Cloud Testing Tool. http://skytap.com/ . Accessed May 2012
 56. uTest: uTest Cloud Testing Tool. http://utest.com/ . Accessed May 2012
 57. VMLogix: VMLogix Lab Manager Cloud Testing Tool. http://vmlogix.com/ . Accessed May

2012
 58. SauceLabs: On Demand Cloud Testing tool. http://saucelabs.com/ . Accessed May 2012
 59. Taipale, O., Kasurinen, J., Karhu, K., Smolander, K.: Trade-off between automated and manual

software testing. Int. J. Syst. Assur. Eng. Manag. 2 (2), 1–12 (2011)
 60. Ramler, R., Wolfmaier, K.: Economic perspectives in test automation: balancing automated

and manual testing with opportunity cost. In: Proceedings of the 2006 International Workshop
on Automation of Software Test, AST’06, pp. 85–91. ACM, New York (2006)

 61. Berner, S., Weber, R., Keller, R.K.: Observations and lessons learned from automated testing.
In: Proceedings of the 27th International Conference on Software Engineering, ICSE’05, pp.
571–579. ACM St. Louis, MO, USA (2005)

 62. Bertolino, A.: Software testing research: achievements, challenges, dreams. In: 2007 Future of
Software Engineering, FOSE’07, pp. 85–103. IEEE Computer Society, Washington, DC
(2007)

 63. Coelho, R., Cirilo, E., Kulesza, U., Von Staa, A., Rashid, A.: JAT: a test automation framework
for multi-agent systems. In: 2007 I.E. International Conference on Software Maintenance, vol.
34, pp. 425–434 (2007)

 64. Parveen, T., Tilley, S., Daley, N., Morales, P.: Towards a distributed execution framework for
JUnit test cases. Software Maintenance, 2009. ICSM 2009. IEEE International Conference,
pp. 425, 428, 20–26 September 2009

 65. Rankin, C.: The software testing automation framework. IBM Syst. J. 41 (1), 126–139 (2002)
 66. Impetus: Using Test Automation to Address Agile Testing Challenges, Impetus Whitepaper.

 www.impetus.com/Home/Downloads . Accessed May 2012

I. Chana and P. Chawla

http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.pdf
http://assets1.csc.com/lef/downloads/CSC_Papers_2011_Agile_Process_Framework.pdf
http://zephyr.com/
http://skytap.com/
http://utest.com/
http://vmlogix.com/
http://saucelabs.com/
http://www.impetus.com/Home/Downloads

165Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_8, © Springer-Verlag London 2013

 Abstract Testing in the cloud, commonly referred to as cloud testing , has revolu-
tionised the approach adopted in traditional software testing. In the literal terms, it
refers to testing Web applications in the “cloud” – leveraging a service provider’s
ready-made testing resources. The customer boycotts the hassle and expense of
procurement, setup and maintenance of test environment setup on premise.
Previously, accustomed solely with non-functional testing such as performance
and load testing , recent advancements have made it possible to write test scripts
and modify and automate test suites – all in the cloud environment. This chapter
provides an in- depth overview of contemporary cloud testing, the types and its
best practices. The benefi ts and risks are fully discussed with recommended methods
to abate these risks. A methodological approach to govern an organisation migrating
to cloud testing is also presented. A unique model, which shows the complex and
dynamic interrelationship among active factors and their effect on the major project
success factors in a cloud testing environment, is designed and presented. These
project success factors include productivity, quality and cost. This model will help
management to make strategic decisions on the adoption of cloud testing and the
impact of their policy adoption on the productivity, quality and cost of software
development projects.

 Keywords Cloud computing • Cloud testing • Testing-as-a-Service • Agile software
development

 Chapter 8
 Testing in the Cloud: Strategies, Risks
and Benefi ts

 Olumide Akerele, Muthu Ramachandran, and Mark Dixon

 O. Akerele (*) • M. Ramachandran • M. Dixon
 School of Computing and Creative Technologies, Faculty of Arts, Environment and Technology ,
 Leeds Metropolitan University, Headingley Campus , Caedmon Hall , LS6 3QS Leeds, UK
 e-mail: o.akerele@leedsmet.ac.uk; m.ramachandran@leedsmet.ac.uk; M.Dixon@leedsmet.ac.uk

166

8.1 Introduction

 Cloud computing has been a coveted buzzword in the computing industry and has
been trending since the year 2005. Cloud computing is the technology behind the
provision of software applications, data storage, computation and data access by
service providers to their customers (businesses or individuals) – leveraging the
Internet as the deployment medium [1] making the traditional infrastructure acqui-
sitions necessary for on-premise computing operations unwarranted. The cloud ser-
vice provider is typically located remotely, and the customer is charged proportionally
to the amount of service or infrastructure usage.

 Software development has been suggested to be improved by the introduction of
cloud computing [2]. Apparently, every individual development phase and activity
in the software projects can now be executed in the cloud; this includes coding, test-
ing, deployment and maintenance of software projects. An area of viable potential
research is the impact of the evolved synergy achieved from the adoption of cloud
testing on a software development process methodology, particularly agile-based
processes such as the Test-Driven Development (TDD).

 Testing in the cloud, mostly referred to as cloud testing in this chapter, is the
practice of carrying out the “testing” phase of the software development process in
the cloud, hence preventing the need for the vast capital expenditure on acquiring
infrastructure, licences and setup on customer site. The most popular applicability
of cloud testing has been in carrying out performance and load testing where there
is the vital need to generate multi-user traffi c from various locations – which would
ideally need numerous high-confi guration servers for the traffi c simulation. For
example, a project needing to carry out load testing by hitting the test server with
30,000 users simultaneously will require a sizeable amount of infrastructure – with
direct implicit soaring costs of test environment setup.

 The ease and agility of the testing environment setup, reduced cost and maximum
effi ciency of the leveraged testing environment in cloud testing makes it an alluring
option for both big- and small-sized software development teams. This chapter
provides an overview of cloud testing and its various modes of deployment – with
special emphasis on cloud testing in the context of non-functional Web applications
testing in the cloud. Section 8.2 presents an overview of cloud testing, classes of
cloud testing and the benefi ts, risks and a proposed best practice model for testing
software applications in the cloud. Section 8.3 discusses the various ways in which
cloud testing boosts the “agility” of a software development team. Section 8.4
describes a unique cloud testing causal loop model which summarises the activities,
benefi ts and risks of adopting cloud testing.

 In this chapter, the terms “software development organisation”, “customer”, “user”
and “development team” are all used interchangeably. They all apply to the purchaser
and adopter of the cloud testing service. Likewise, the terms “service provider” and
“cloud vendor” are used in the same context, and both refer to the provider of the cloud
test platform and services. In most parts of this chapter, cloud testing infers to perfor-
mance, stress and load tests carried out in the cloud. However, it is implicitly specifi ed
at instances when it is used in the context of performing functional tests in the cloud.

O. Akerele et al.

167

8.2 Cloud Testing

 Cloud testing is the carrying out of traditional testing practices using test resources
situated in the cloud – made possible by the technology of virtualisation. This
encompasses carrying out tests on both enterprise and Web applications in the cloud
environment. Cloud testing can be classifi ed under the three modes of cloud com-
puting depending on the test activity requirements.

8.2.1 Types of Cloud Testing

 Broadly, cloud computing is categorised under Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) [2]. The author has
further classifi ed cloud testing under these three categories of cloud computing as
Cloud Testing Infrastructure-as-a-Service (CTIaaS), Cloud Testing Platform-as-a-
Service (CTPaaS) and Cloud Testing Software-as-a-Service (CTSaaS). Figure 8.1
shows the types of cloud testing which are proposed and examples of the service
providers and are defi ned and described as follows:

8.2.1.1 Cloud Testing Infrastructure-as-a-Service (CTIaaS)

 This category provides organisations secured access to storage, hardware, network-
ing components (including load balancers) and servers over the Internet for testing
and development purposes. The infrastructure is the property of the service provider
and is usually housed, run and maintained by the same. Customers pay for the
amount of infrastructure needed for testing purposes, and this is maintained solely
for the customer use by the service provider. All major testing activities are done on
the customer site. Organisations have a high level of control over their instances and
this category is deemed the most secured albeit it is the most capital intensive. The
ease and low cost of racking up and tearing down the server makes it a very attrac-
tive option for organisations who are concerned about their data security. Customers
are priced on a pay-as-you-go basis with the prices varying linearly with the number
of “instances” of the server (Windows or Unix) and the software environment

 Fig. 8.1 Classifi cations of
cloud testing

8 Testing in the Cloud: Strategies, Risks and Benefi ts

168

installed on them. The network traffi c on the server as well as the volume of the data
hosted on the server also infl uences the pricing. Typical examples of such service
providers are VMware and Amazon. Figure 8.2 presents an overview of the three
major modes of deploying cloud testing and their relative cost and control propor-
tional relationships. The fi gure indicates CTIaaS is the most fl exible category which
provides organisations full control of their resources while CTSaaS is the least capi-
tal intensive as organisations do not require infrastructure or resource of their own
for testing purposes.

8.2.1.2 Cloud Testing Platform-as-a-Service (CTPaaS)

 CTPaaS provides a platform to development teams for functional testing purposes.
This enables development teams leverage Cloud Integrated Development
Environments (IDEs) with inbuilt unit frameworks to perform various functional
tests and edit test scripts for test automation. CTPaaS vendors provide a subtle plat-
form for operational facilities ranging from application development, testing and
deployment environment. In other words, CTPaaS could be regarded as a platform
for cloud-computing system development.

 CTPaaS obliterates the need for the substantial capital that would otherwise be
needed to set up a testing/development environment by helping to deliver the spe-
cifi c platform confi gurations through the Web browser interface. Hence, without
any hardware or software investment, the platform of the service provider can be
fully leveraged for software testing purpose. For instance, if development and test-
ing requirements of a new application are Asp.net and SQL server database, an
organisation would ideally need the following: VS.Net developer’s licence, SQL
server licences and deployment on a production server. The cost implication and
confi guration time of setup can all be done away with now! Also eliminated are the
concerns for the staff and personnel expertise necessary to acquire and maintain the
necessary infrastructure. CTPaaS enables users to select the testing requirement
confi gurations via the Web browser interface presented by the service provider.

 In some cases, such tests have to be written in the service provider’s Domain-
Specifi c Language (DSL). A typical example of this platform is the force.com with
its proprietary programming language Apex Code . The major disadvantage of this
is “Vendor Lock-In ” [3] – which is literally the power the service provider possesses
to lock customers into the service provision due to the customer’s high cost of

 Fig. 8.2 Cloud testing stack

O. Akerele et al.

169

migrating to another provider or platform. The high costs of rewriting all the tests
scripts in another programming language and the cost of training new personnel on
a new platform make it an expensive option for customers to source other service
providers.

8.2.1.3 Cloud Testing Software-as-a-Service (CTSaaS)

 This is the most popular and adopted category of cloud testing and often illusively
understood as the only application of cloud testing [4 , 5]. Non-functional tests, par-
ticularly load and performance test s, are run on browsers offered by the service
providers. Users enjoy the privilege of choosing the operating systems, browser
types and versions, number of simultaneous Web traffi c users as well as the various
geographical locations of the mimicked generated traffi c. This category allows Web
application testing in the cloud by running the tests using real-life generated data
traffi c as input. The generated traffi c is applied over the same communication chan-
nels as a Web browser, i.e. HTTP and HTTPS over ports 80 and 443, respectively.
Examples of such platform are Loadimpact and JMeter. Figure 8.3 below broadly
categorises the types of testing that are done in the cloud into functional and non-
functional tests.

 Cloud testing is used to apply solely to load and performance tests; recent
advancements have seen it applied in numerous forms for functional testing such as
unit tests, integration tests, system tests and user acceptance tests.

 Fig. 8.3 Types of testing in the cloud

8 Testing in the Cloud: Strategies, Risks and Benefi ts

170

8.2.2 Economics of Cloud Testing

 As in other business models, the Pareto principle (80-20 rule) can be effectively
applied to software projects. The analogy hypothesises that software development
teams running their own data centre infrastructure for testing utilise 80 % of their
resources (capital, personnel, time, fl oor space) on acquiring and maintaining their
own infrastructure, while 20 % is actually spent on the main value adding test activi-
ties of the project.

 Cloud testing enables an organisation to deviate from this traditional “80-20”
ratio described to a “20-80” – empowering organisations to swap 80 % of its
resources on the actual core activities while 20 % of its resources are now spent on
the non-value adding activities. With cloud testing, 80 % of the resources are spent
on crucial activities like test script writing, unit testing, test automation and devel-
oping continuous improvement strategies for test process; 20 % of the resources are
spent on less value adding activities like test environment setup, database confi gura-
tions and browser installations.

 Cloud testing has been suggested to provide up to 50–70 % testing cost
savings – when appropriately adopted and integrated into software development
organisations [4]. A signifi cant amount of savings is made on infrastructure, licence
purchase, storage mediums, multiple operating systems and experienced QA team.
This also includes savings in labour for designing as well as building hardware and
software platforms.

 Fixed costs from the high investment on servers, network equipment and licence
purchases are converted to variable costs as customers are charged on a “pay-as-
you-go” basis. The evolved variable cost varies proportionally to the amount of the
service provider’s leveraged resource usage by the customer. Flat monthly/yearly
fees charged to customers by service providers are no more the case, and customers
hence do not pay for underutilised resources.

 The reduction or eradication of the total cost of ownership is the most obvious
attraction to cloud testing. The capital intensity of acquiring the infrastructure and
platform for testing is avoided – making software development a more hospitable
industry for start-ups and SMEs. The unused capital can then be diverted to fund
more value adding and prioritised needs.

8.2.3 Benefi ts of Cloud Testing

 The advantages of cloud testing to software development organisations and teams
are systematically divided in three sections. The fi nancial benefi ts to the organisa-
tion were discussed in Sect. 8.2.2 . The third section is discussed later in this chapter
in Sect. 8.3 . The general impact of cloud testing is now discussed.

O. Akerele et al.

171

8.2.3.1 Improved Quality

 Cloud testing reduces defects in web applications as compared to traditional
on- premise testing [6]. There are two main factors responsible for this: the closeness
of the simulation environment to the actual production environment making it easy
to capture any bugs that will be encountered in real case scenario. Secondly, being
the cloud vendor’s area of expertise and core activity, they are more aware of the
recent challenges faced, particularly security-wise, and are therefore able to put
these into consideration during development and maintenance of their platforms.

8.2.3.2 Improved Accuracy

 The cloud testing platform explored provides an environment with little or no varia-
tion from the actual production environment. Consequently, there is notable improve-
ment in the predictability and accuracy of testing. There is also a higher degree of
accuracy in the test. This makes the software quality more controllable, and this is a
huge step for companies trying to adopt Six Sigma and achieve CMM levels 4 and 5
accreditation [3].

8.2.3.3 Waste Reduction

 Another valuable benefi t of cloud testing is that the organisation is charged on a
pay-as-you-go basis by the cloud vendor. The scalability of the “rented” platform
makes it possible for the organisation’s price to vary linearly with the amount and
time of cloud platform usage. This helps to reduce waste that occurs when infra-
structure is redundant and helps the organisation to go “lean”. This invention
reduces the much valued time and effort spent by QA in creating the appropriate
development and testing environment, hence greatly improving the Time-to-Market
(TTM) of the developed software.

8.2.3.4 Improved Return-on-Investment (ROI)

 Return-on-Investment will take a considerable leap when cloud testing is adopted
appropriately. On-site QA team can now focus on improving quality and testing
features instead of spending time acquiring, setting up and confi guring infrastruc-
ture. They can now devote their time on process improvement activities. There is
immense improvement in reliability of the tested application. The defect density
and maintenance cost of the software would also subside consequently – improving
the reliability of the software system. Substantial savings are made on maintenance
costs on fi nding and fi xing bugs on released software. The risk of losing customers

8 Testing in the Cloud: Strategies, Risks and Benefi ts

172

and competitive advantage due to complaints and damaged reputation is also
reduced. Improvement in product quality improves customer satisfaction, retention
and advocacy. Non-conformance cost is also reduced due to reduced resource to
deal with customer complaints. As reported by a leading bank in 2009, their soft-
ware projects adopted cloud testing and made overwhelming cost savings with a
predicted ROI of 474 % over the following 3 years [7].

8.2.3.5 Green Testing

 There is the ever-increasing need for industries to be environmentally responsible
by going “green” and the IT industry is no exception. Cloud testing organisations
enhance green testing. By sharing test resources in the cloud, businesses use IT
resources solely on demand and this eliminate wastes by eradicating infrastructure
idleness. In addition, organisations using cloud data centres can minimise energy
use and deliver environmental savings in CO

2
 by up to 80 % [8].

8.2.3.6 Easy Barrier to Exit

 In the event the software development organisation decides to stop operation due
to fi nancial or strategic reasons, it is easier for the organisation to opt out as there
is not much resources “locked-in”, if at all any. This is unlike the diffi culty to exit
operations faced by an organisation that has made a lot on investment in acquiring
these infrastructures, storage and operating systems to carry out its testing activi-
ties on site.

8.2.4 Best Practices for Migrating to Cloud Testing

 Migrating to cloud testing has to be a systematic process otherwise it could turn out
to be a fi asco. A shrewd and meticulous approach has to be adopted to avoid failure
and reap the maximum benefi ts of cloud testing. The recommended sequential
activities during the migration process are represented in Fig. 8.4 .

 Figure 8.4 depicts the diagrammatic fl ow of the best practices before migrating
to cloud testing. They are explained below.

8.2.4.1 Cost-Benefi t Analysis

 This is the most crucial and fundamental process in the roadway to leveraging cloud
test platform. It involves the preliminary feasibility study and an in-depth break-
down of the benefi ts and the cost associated with its adoption in the organisation.
This is usually handled by a cloud broker who will be conducting full auditing of

O. Akerele et al.

173

the entire testing infrastructure requirements of the organisation. Ideally, a 2-year
ROI analysis should be enough to give an insight into its viability. Some organisa-
tions however require a minimum of 5-year ROI projection. It is a common illusion
that cloud-computing testing is generally cheaper. Ongoing intrinsic costs associ-
ated with cloud testing include the cost to support privacy regulation policy, cost
to build auditing processes in the system and recovery service cost [8]. Before
such conclusion could be reached, all the related cost associated should be consid-
ered holistically. It is easy for organisations to fall for “Management-by-Magazine”
approach particularly with new computing innovations and cloud testing is one of
them.

Cost-Benefit Analysis

Benefits > Cost ?

Yes
No

Discard Proposal

Training and
Awareness

Develop Test Strategy

Source Cloud Test
Vendor

Cloud Test Platform
Testing

Test Deployment

Unsatisfied

Satisfied

TestPlan

 Fig. 8.4 Cloud testing migration model

8 Testing in the Cloud: Strategies, Risks and Benefi ts

174

8.2.4.2 Training and Awareness

 The transitional process should continue with the formal introduction of the relevant
teams to cloud computing and testing. This can be classroom based or simply pro-
vide texts from the “dummies” series on cloud computing. This is to provide a
foundational understanding on its applications and how they are applied to cloud
testing. The major impetus for the need for cloud test migration in the organisation
should be emphasised, and necessary feedback from the stakeholders at this stage is
vital to the successful adoption of cloud testing.

8.2.4.3 Developing Cloud Testing Strategy

 This should be developed beforehand and should be informative. It should be made
available to the stakeholders to envisage the aims and objectives of the proposed
initiative – while welcoming any feedback from the stakeholders. Vital constituents
include goals of the initiative, infrastructure and resource requirements, types of
tests (load testing , stress testing, security testing, functional testing) to be migrated
to the cloud and anticipated risks with the corresponding mitigation techniques.

8.2.4.4 Sourcing Cloud Testing Vendors

 After the test environment confi guration requirements have been elicited, the next
step is to fi nd the most suitable cloud test provider that can satisfy the team’s goals
and objectives. Failure to secure an adept and reliable vendor will lead to inconsis-
tent and erroneous testing, and this could turn out to be frustrating and regretful.
The “ramp-up” and “tearing down” time to initiate cloud testing should also be
considered when choosing the vendor. A good Service Level Agreement (SLA)
must also be negotiated by the management before signing a contract. The barriers
to easily change the provider are also paramount to make switching service provid-
ers easy and must be considered. Figure 8.5 summarises the selection process for
the right cloud test vendor.

8.2.4.5 Cloud Test Platform Testing

 Equally important is the testing of the cloud test environment to ensure the cloud
vendor can perform to meet with the development team’s goals. Adequate testing
also helps to alleviate possible risks that may occur during testing. Vigorous testing
performed should be aimed at determining the cloud environment’s level of secu-
rity, scalability, reliability and performance. These tests should be fully run before
an agreement is signed with the cloud provider and before executing any tests. Other
aims of testing the platform should focus on data governance, manageability, avail-
ability, latency, connectivity, regulatory compliance, uptime and privacy. There are

O. Akerele et al.

175

third-party tools such as Cloudstone and Cloud Harmony that can be utilised in
testing the performance of the cloud test environment.

8.2.4.6 Test Execution

 It is imperative that the test environment is confi gured correctly before test execution.
Thirty percent of all defects are reported to be caused by wrong test environment
confi gurations [5]. Following the success of the previous steps, test activities can
now be securely carried out on the vendor’s platform. A good practice is to start the
initiation process with the more experienced testers who can quickly grasp the dissimi-
larities between cloud testing and the traditional on-premise testing – and use this to
mentor the less experienced ones on the best practices in the new environment.

 Following the successful migration of the testing activities to the cloud,
activity monitoring, analysis and reporting must be continuously ensured. The
performance of cloud testing must be evaluated constantly by the development
organisation – particularly during real-time simulations. Productivity of cloud
testing might be lower initially considering the learning process of getting used to
the new test environment but will improve signifi cantly with time if this approach
is followed diligently. A major factor is the learning curve of the testers in learn-
ing the DSL of the service provider’s platform (if any). Metrics such as defect
density, test coverage and the likes should also be closely monitored – while being
alert at any eyebrow- raising variability in the system performance. The SLA
should be closely monitored to ensure the vendor is keeping to their part of the
agreement. It is a good practice to hold regular meetings with the cloud test
vendor to highlight any areas of concerns, risks or issues that might arise during
the course.

Enlist Candidate
Vendors

Candidate
Vendors

Test
ResultsTest Vendor Platforms

Decision on ‘Best’
Platform

Testing

 Fig. 8.5 Platform sourcing
process

8 Testing in the Cloud: Strategies, Risks and Benefi ts

176

8.2.5 Risk Assessment in Cloud Testing

 Risks in leveraging cloud testing by the customer are bidirectional: while the cus-
tomer transfers some risks during the process, they are also prone to certain risks
from the vendor. Adopting cloud testing must therefore be meticulously planned
with proactive measures to reduce the occurrence of the highlighted uncertainties [9].

 For the purpose of clarity, these risks are classifi ed into business risks and project
risks. Business risks in this context are those that have a direct impact on the profi t-
ability and reputation of the organisation, while the project risks have a direct impact
on the success of the software engineering project. Table 8.1 outlines the risks the
customer is prone to when adopting cloud testing:

 The risk items tabulated above are further explained in the following section.

8.2.5.1 Non-conformance to Organisational Policy, Strategy
and Methodology

 The testing processes of the service provider might not be following the principles
governing the customer’s organisation. Service providers usually have separate
regulations governing their operations and infrastructure management. This might
be diffi cult to verify even when specifi ed in the SLA due to the limitation of the
customer’s involvement in cloud vendor’s activities. This is unlike the on-premise
sites where there is a governance system to ensure compliance. This can be miti-
gated by emphasising on compliance on the contract agreement and strictly outlin-
ing the organisations’ specifi c policies.

8.2.5.2 Security

 The major disgruntlement and concern in cloud testing revolves around security –
especially when the user’s sensitive data will be stored in the production environment
sat in the cloud. The utilisation of a second party’s platform creates an atmosphere

 Table 8.1 Risks introduced by cloud testing

 Business risks Project risks

 Security Non-conformance to organisational policy, strategy and methodology
 Termination of service

provision
 Vendor’s server breakdown/availability

 Inaccurate cost-benefi t
analysis

 Abandoning trusted legacy testing resources

 Biased cloud brokerage Internet connectivity
 Industrial espionage
 Vendor lock-in

O. Akerele et al.

177

for paranoia because organisations usually cede control of the platform and data to
the vendor. This is exacerbated when part of the cloud services is federated to a third
party by the cloud vendor. A couple of infamous let-downs by cloud vendors that
epitomise the above security concerns are:

• Amazon’s “glitch” in April 2011 which was responsible for numerous Web sites’
malfunction.

• Sony of Japan revealed that about 100 million of PlayStation customer accounts
had been hacked.

 This risk is abated by adoption of security testing tools and vigorous hacking
techniques. A disaster recovery test also helps to have an insight into the reliability
and dependability of the testing service provider. These tests should be ongoing and
should also precede the test execution process as discussed earlier.

8.2.5.3 Industrial Espionage

 This is also a major concern particularly when the testing activities are completely
outsourced to a cloud test service provider. The cloud vendor’s personnel could be
easily “tapped” for information about the development organisation’s product and
be offered a reward for such unscrupulous act. For example, the cloud vendor’s staff
could trade in signifi cant features of a product yet to be released to the rival organ-
isations. The rival company could then strategically match or even better the feature
and incorporate this into their similar product. This puts the development organisa-
tion in severe risk of losing their competitive advantage in such scenario. To reduce
this risk, consequences of information divulgence must be reasonably severe,
explicitly communicated and stated in a non-disclosure agreement offered to cloud
vendor personnel.

8.2.5.4 Termination of Service Provision

 In the event the service provider terminates service provision due to fi nancial or
strategic reasons, the user could potentially be in trouble if adequate provision and
fl exibility for adopting a “plan B” is not in place. Strategic decisions could be due
to merger and diversifi cation or simply the company’s decision to concentrate on
more profi table business activities. Service providers reserve the arbitrary right to
terminate customer’s account without notice due to policy violations; this however
happens in exceptional cases. This risk can be reduced by checking the vendor’s
history to ensure it has been sustainable and fairly successful in operations for a
reasonable length of time – to give some assurance on its reliability in the industry.
Also, the signed contract should indicate a fair notice period for termination of
contract by either party.

8 Testing in the Cloud: Strategies, Risks and Benefi ts

178

8.2.5.5 Inaccurate Cost-Benefi t Analysis

 Risk of unanticipated soar in operation cost associated with cloud testing is also a
possibility when the cost-benefi t analysis is not done correctly with all latent costs
unravelled. This could make the decision of adopting cloud testing a regrettable one
should the costs outweigh the benefi ts on the long run. These costs should include,
if applicable, cost of writing or modifying the entire test cases should the cloud test
platform require applications tested in its own discrete language. The opportunity
cost of such activities should also be considered. The analysis and comprehensive
cost projection should be cross-checked by a second cloud expert – who could be an
insider so as to reduce cost.

8.2.5.6 Biased Cloud Brokerage

 Cloud brokers act as intermediaries between cloud vendors and individuals or busi-
nesses purchasing there service. They help the potential users to understand their
needs and source the possible best cloud service providers in return for an agreed
premium. This involves the end-to-end audit of the entire incumbent testing process
of the customer and the network infrastructure and usually putting up the cost- benefi t
analysis as well as the expected ROI necessary to make the business case for cloud
testing. This consultancy service is usually costly but it is a vital process and must be
done regardless if it is done in-house or outsourced. The challenge is actually in
getting an unbiased broker because most cloud brokers usually have some sort of
affi liation with specifi c cloud vendors and they are rewarded for their referrals.
Hence, there is the tendency for brokers to always recommend adopting cloud testing
as the best solution to customers even when that is not the case. Also, cloud brokers
advocate the “best” cloud vendors to their customers, and these vendors are usually
the ones they have affi liation with, not necessarily the best service providers to meet
the customer’s needs. Getting acceptable references from the broker’s customers is a
way of reducing this risk. Also, ensuring that the fi nal decision of the choice of the
vendor is in the user’s hands helps to reduce getting “sold” to a cloud vendor.

8.2.5.7 Abandoning Trusted Legacy Testing Resources

 Discarding the old testing infrastructure and resources poses a huge risk to an
untested technology in an organisation. Though the on-premise testing require-
ments are quite expensive to maintain, replacing them with untested technology
could be disruptive, more expensive and potentially risky. Retraining of staff on the
new cloud vendor’s system and also learning the service provider’s DSL (if any)
take a lot of time, and an initial reduced productivity should be expected. This risk
can be controlled by avoiding the big bang approach to cloud test migration.
Selecting a vendor that utilises the user’s familiar application language is also very
important and helpful.

O. Akerele et al.

179

8.2.5.8 Vendor Lock-In

 Many cloud platform vendors, like force.com using Apex Code [10], offer services
on their platform in their Domain-Specifi c Language (DSL) – making it diffi cult to
move applications to another CTPaaS . Due to the high switching costs (time, effort
and other resources as well as cost already spent on personnel learning the propri-
etary language) in migrating to a new platform, customers are tied down to the
vendor. This gives the vendor the power to increase the subscription rates at any
time, and this would have an adverse effect on the ROI. Google, another example of
vendor that provides app engine CTPaaS in its proprietary language, recently
announced a shocking increase of 100 % in their pricing which caused an intense
backlash from users. The best way of eliminating this risk is avoiding lock-ins by all
means. Choosing programming languages that are easier and faster to modify can
also reduce the impact of this risk.

8.2.5.9 Cloud Vendor’s Server Breakdown

 The breakdown of the testing platform server entirely paralyses the testing activities
of the customer. This affects not only the testing activities but all other activities
dependent on the testing phase. Hence, the server needs to be up and running as well
as being available at all times to prevent this period of no activity. Running avail-
ability tests before choosing the vendor can help reduce this risk.

8.2.5.10 Internet Connectivity

 The success of the testing activity is fully reliant on the provision of fast, reliable,
dependable and robust Internet connection. Necessary network infrastructure to
provide this is a prerequisite to venturing into cloud testing with a service provider.
This is because should the Internet connection fail, testing activities cannot be run
on the vendor’s platform and this could result in substantial loss as there will not be
connection to the host server.

8.3 Impact of Cloud Testing on Software Development Agility

 Agile software development values quick feedback to customers, collocation and easy
collaboration between team members and customers. This reduces idleness by capi-
talising on the “just-in-time” approach of the development activities and fl exibility to
user requirements at any stage in the development process. Cloud testing ticks the
fore-mentioned features to enhance the “agility” of a software development process
and is therefore considered a good match – particularly to distributed agile teams. The
relative impact of cloud testing on agile development projects is detailed below:

8 Testing in the Cloud: Strategies, Risks and Benefi ts

180

8.3.1 Reduced Time-to-Market (TTM)

 Feedback is vital in agile processes. Cloud testing signifi cantly reduces the test
cycle times of software projects and consequently the deployment cycle. Cloud
testing not only has a major impact on the TTM, it also improves the fl exibility of
the system to accommodate changes and requirement creep [5]. The type of agile
methodology adopted also has an impact on the impact of cloud testing on the
deployment cycle. For example, when TDD is adopted, concise and just enough
code needed to design and test a function is written. With this, even more time is
saved in coding and testing by avoiding extraneous coding and this will positively
impact the TTM for the software.

8.3.2 Support for Geographically Dispersed Teams

 Cloud testing eradicates the problem of proximity in dispersed development teams.
It bridges the geographical distance between global teams – enabling easy inter-
change and handover of feature development among teams as if they were collo-
cated. Teams can now collaborate globally with a self-defi ned user interface. The
omnipresent accessibility of the cloud test platform via a common URL makes it
possible for distributed teams to perform testing without geographical barriers and
makes handing over easier.

8.3.3 Visibility and Accessibility

 Teams can now collaborate in real time; this overcomes the problem of delay in
hours or even a day in sending and receiving data between offshore and onshore
colleagues. Every testing activity can be revealed and made visible in real time and
accessed from anywhere via a custom URL for the organisation.

8.3.4 Support for Automated Testing

 There is an increasing demand for automation in software development due to its
signifi cant time savings on the development cycle [5]. Automation is now being
applied in development, testing and even software deployment. Cloud testing fully
supports agility in testing by creating a welcoming platform for writing and import-
ing automated scripts for functional testing. Cloud test platforms usually have
plug- ins that allow the recording of the test activities to be analysed after test com-
pletion. Valuable time can now be spent investigating new possible bugs instead of

O. Akerele et al.

181

exhausting time on running repeated tests manually. Cloud testing also provides an
environment to concurrently run tests with different confi gurations on the same
machine. This produces fi nancial savings due to customers being charged on time
consumed for testing.

8.3.5 Requirement Volatility Support

 Cloud testing encourages frequent changes to requirements as it provides testing
accessibility anywhere and testing the modifi ed system is made possible anywhere.
The effect (estimated fi nish date) of the frequent changes in the requirements and
requirement creep is offset by the reduced test cycle achieved by cloud testing.
Also, the scalability of the system makes it possible to test each iteration feature as
each iteration feature might require the ramping up and scaling down of the system
requirements.

8.3.6 Bug Reproduction

 Another vital importance of cloud testing is the quick ability to reproduce bugs for
further analysis. This has been a major issue in traditional testing. There is a con-
stant need to regenerate bugs that were detected in an environment for further
investigation. During simulation, snapshots at the point of software failure could
be taken to show the entire confi gurations when bugs are found – enabling testers
to quickly revert to the confi guration needed to reproduce the bugs and they can
start debugging in no time.

8.3.7 Support for Test-Driven Development

 Cloud testing creates synergy by being fully supportive of agile development tech-
niques such as the TDD. Automatic unit tests are written to fail, pass and refactor – all
in the cloud. This yields great time savings and fosters quick customer feedback while
guaranteeing improvement in software quality.

8.3.8 Parallel Testing

 Agility is improved by allowing tests to be run in various scenarios concurrently
without having to test consecutively on the same physical machines. It also facili-
tates testing various components simultaneously. This increases throughput and

8 Testing in the Cloud: Strategies, Risks and Benefi ts

182

coverage while reducing test cost. It enables the tester to create different confi gurations
such as the operating system database and storage to meet the actual production
environment specifi cation.

8.4 Cloud Testing Model

 The cloud testing model described in this section diagrammatically summarises the
entire cloud testing system – giving an instant high-level view of the processes,
advantages, risks and consequences of actions within a cloud testing environment.
All the components within the cloud test platform are modelled as interrelated fac-
tors in feedback loops. This model succinctly describes the variables, infl uencing
factors and the dynamic infl uence of cloud testing activities in a software organisa-
tion. It shows the interrelationships and continuous nature of the actions performed
in cloud testing and the resulting positive and negative impacts in the cycle.

 The model provides a high-level general overview of cloud testing to manage-
ment for decision-making purposes regarding adoption of cloud testing in the soft-
ware organisation. The model can be used to trace the root causes of irregularities
as well as improvements achieved when leveraging cloud testing platform. It pro-
vides an instant insight into the risks the potential users become susceptible to when
testing applications in the cloud and also presents the opportunities. A signifi cant
portion of this model can also be applied to cloud computing in general. The posi-
tive and negative polarities indicate constructive and degenerative impact on the
variables respectively. A number of assumptions have been made in constructing
this causality model:

• Testing is fully automated.
• All other activities before development and after testing are performed on

premise.
• Iteration-based development approach is adopted.
• The cloud vendor uses a DSL .

 This dynamic model is presented in Fig. 8.6 . The positive and negative polarities
in the designed model indicate constructive and degenerative impacts on the direc-
tional variables respectively.

 For brevity, a brief explanation of the major variables in this causal model dia-
gram is explained below. The factors referenced in the model are italicised.

8.4.1 Productivity

 The Corporate IT Governance in an organisation should encourage the provision of
up-to-date training on cloud testing, thus improving the organisation cloud aware-
ness. This earns the stakeholder support as well as better understanding cloud

O. Akerele et al.

183

vendor technology for its potential adoption. Stakeholder support greatly favours
 productivity due to the motivation given by the stakeholders. Trust is built in the
software development organisation when the cloud vendor technology is fully
understood and supported which is extremely vital to maximise productivity in soft-
ware testing.

 The global accessibility of the cloud test platform also helps to keep the work
going at anytime from anywhere to boost productivity . The short test cycles enhance
agility and make the entire development cycle reduced, and teams can meet their
deadlines better while attaining better productivity. This reduces the schedule pres-
sure and undue tension in teams hence improving productivity.

 The only degenerative factor into this variable is Acquaintance Period of New
Platform . This is the time it takes to get used to the new interface as well as the
 vendor customary language (DSL) of the cloud test provider. The time spent to learn
the customary language reduces the time that could actually be spent performing
testing, hence reducing team productivity.

business risks

Cloud test
platform leverage capital

requirement

maintenance
cost

−

−
−

+

+

+
+

+

+

+

− −

−

−
−

−

−

−

−

−

−

+

+

+

+

+

+ +

+ +

+ +
−

+

+
+

+

+

−
−

Pay-Per-Use
Policy

Reduced test
cycle

Test set-up
time

Revenue

SOA adoption
level

vendor choices

global
accessibility

Corporate IT
Governance organization cloud

awareness

stakeholder
support

trust

understanding cloud
vendor technology

need for technical
personnel adherence to

industrial standards

Time to Market

Software
quality

Error fix rate
Error density

Schedule
pressurerework

feedback agility Quick bug
reproduction

Project cost

CAPEX

OPEX

Training cost

Vendor Customary
Language

Vendor lock-in

Productivity

Barrier to Exit

Management
motivation

Acquaintance period
with Platform

Interation
release rate

 Fig. 8.6 The cloud testing model in software development

8 Testing in the Cloud: Strategies, Risks and Benefi ts

184

8.4.2 Project Cost

 Due to the reduction on infrastructure and other test resource requirements, costs on
the organisation shift from capital expenditure to operational expenditure needed to
keep testing activities running. The pay-per-use policy also signifi cantly reduces the
costs that would otherwise be spent as a lump sum on the long-term usage purpose.
The cost related to the cloud vendor platform language, i.e. training cost , however
adds to the project cost . This includes the opportunity cost as well as the wages of
adopting the cloud vendor’s platform.

8.4.3 Software Quality

 The omnipresent visibility of the project and detected bugs makes it easy to easily fi x
the bugs without any geographical time constraints. The ability to have snapshots of
the detected defects also makes it easy to confi gure the application to reproduce the
bugs for fi xation. This immensely improves the rate of error fi xation and consequently
the error density in the software. With these reduced effects, higher software quality
and reliability is achieved. This is further hypothesised to improve the customer satis-
faction leading to increased software sales leading to increase in revenue.

8.5 Conclusion

 Cloud testing is relatively new in the industry but gradually growing popularity
particularly in the application of performance and load testing . In a number of ways,
cloud testing enhances the “agility” of the testing process in terms of the reduced
development cycle, improved quality and faster ROI. Cloud testing, when integrated
well into software projects, accounts for vast savings due to the avoidance of total
cost of ownership (TCO) and also helps to reduce TTM. This invention is however
not a silver bullet and has a tangible number of risks, particularly security-wise,
when companies have to put vital information in the cloud to create a production
environment for testing.

 There are steps that need to be ensued to determine its profi tability, relevance and
alignment with an organisation’s goals. A unique model has been presented in this
chapter which includes all the variables in a cloud test environment – including the
risk factors, benefi ts and causal effects of decisions taken in an organisation adopt-
ing cloud testing. Cloud testing is steadily making its mark and software teams are
now realising the benefi ts of testing their software applications in the cloud. Based
on the present trend of the pervasiveness of cloud testing, it is expected that cloud
testing will have a monumental indelible impact on software testing and develop-
ment over the next few years.

O. Akerele et al.

185

 References

 1. Barry, C.: 70+ ways to reduce costs, increase productivity and improve customer service.
 http://www.fcbco.com/Portals/163466/docs/FCBCO-Cost-Reduction (2008). Accessed 4 May
2012

 2. Bykov, S., Geller, A., Kliot, G., Larus, J.R., Pandya, R., Thelin, J.: Orleans: cloud computing
for everyone. In: Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC’11,
pp. 16:1–16:14. ACM, New York (2011)

 3. Salkever, A.: 5 ways to protect against vendor lock-in in the cloud. http://gigaom.
com/2011/09/24/5-ways-to-protect-against-vendor-lock-in-in-the- cloud/ (2011). Accessed 23
Feb 2012

 4. Linthicum, D.S.: Cloud Computing and SOA Convergence in Your Enterprise. Addison-
Wesley Professional, New York (2009)

 5. Jun, W., Meng, F.: Software testing based on cloud computing. In: 2011 International
Conference on Internet Computing Information Services (ICICIS), pp. 176–178. IEEE, Los
Alamitos (2011)

 6. Weidong, F., Yong, X.: Cloud testing: the next generation test technology. In: 10th International
Conference on Electronic Measurement Instruments (ICEMI), pp. 291–295. IEEE, Piscataway
(2011)

 7. David, J.S., Schuff, D., St Louis, R.: Managing your total IT cost of ownership. Commun.
ACM 45 (1), 101–106 (2002)

 8. Ebbers, M.: Cloud Computing: Save Time, Money and Resources with a Private Test. IBM
Redbooks. Raleigh, North Carolina, USA (2009)

 9. Kantarcioglu, M., Bensoussan, A., Hoe, S.: Impact of security risks on cloud computing adop-
tion. In: 49th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 670–674. IEEE, Piscataway (2011)

 10. Mountjoy, J.: An introduction to Force.com Apex Code. http://wiki.developerforce.com/page/
An_Introduction_to_Apex_Code_Test_Methods (2012). Accessed 2 Mar 2012

8 Testing in the Cloud: Strategies, Risks and Benefi ts

http://www.fcbco.com/Portals/163466/docs/FCBCO-Cost-Reduction
http://gigaom.com/2011/09/24/5-ways-to-protect-against-vendor-lock-in-in-the-%20cloud/
http://gigaom.com/2011/09/24/5-ways-to-protect-against-vendor-lock-in-in-the-%20cloud/
http://wiki.developerforce.com/page/An_Introduction_to_Apex_Code_Test_Methods
http://wiki.developerforce.com/page/An_Introduction_to_Apex_Code_Test_Methods

 Part III
 Software Design Strategies for Cloud

Adoption

189Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_9, © Springer-Verlag London 2013

 Abstract An important service delivery category of cloud computing is the
Software-as-a-Service (SaaS) domain in which software applications are made
available through the cloud environment. In general, when describing SaaS, no spe-
cifi c application architecture is prescribed but rather the general components and
structure is defi ned. However, it appears that SaaS architectures vary widely accord-
ing to the application category and the number of tenants. To defi ne a proper SaaS
architecture, it is important to have both a proper understanding of the domain and
the architecture design. In this chapter, we provide a domain-driven design approach
for designing SaaS architectures. We provide a family feature model of the SaaS
domain that models both the common and variant parts of SaaS architectures. For
deriving the application architecture based on selected features from the family fea-
ture model, we also provide a systematic approach and the corresponding tool sup-
port. Our approach and the framework tool aim to support the SaaS architect in
generating a proper SaaS architecture.

 Keywords Software-as-a-Service • SaaS • Feature modeling • Reference architec-
ture • Application architecture • Design decisions • Tool support

9.1 Introduction

 Different from traditional enterprise applications that rely on the infrastructure and
services provided and controlled within an enterprise, cloud computing is based on
services that are hosted by providers over the Internet. Hereby, services are fully

 Chapter 9
 Feature-Driven Design of SaaS Architectures

 Bedir Tekinerdogan and Karahan Öztürk

 B. Tekinerdogan (�)
 Department of Computer Engineering , Bilkent University ,
 Ankara 06800 , Turkey
 e-mail: bedir@cs.bilkent.edu.tr

 K. Öztürk
 British Sky Broadcasting , London , UK

190

managed by the provider, whereas consumers can acquire the required amount of
services on demand, use applications without installation, and access their personal
fi les through any computer with Internet access. Recently, a growing interest in
cloud computing can be observed, thanks to the signifi cant developments in virtual-
ization and distributed computing, as well as improved access to high-speed Internet
and the need for economical optimization of resources.

 The services that are hosted by cloud computing approach can be broadly divided
into three categories: Infrastructure-as-a-Service (IaaS) , Platform-as-a-Service
(PaaS) , and Software-as-a-Service (SaaS) . Research on cloud computing has
focused on different issues. Obviously, an appropriate cloud computing architecture
design will play a fundamental role in supporting the cloud computing goals. In the
literature, the basic components required for cloud computing and its conceptual
reference architecture are given. However, designing a cloud architecture is not a
trivial task and involves many different design decisions. For a given reference
architecture , one may derive various different application design alternatives , and
each design alternatives, may meet different functional and nonfunctional require-
ments. It is important to know the feasible architecture design so that a viable real-
ization can be selected.

 To enhance the understanding of cloud computing applications and support the
architect in designing cloud computing architectures, we propose defi ning a
feature- driven design approach for deriving the cloud computing architecture .
Since the domain of cloud computing is quite broad, we focus on the domain of
SaaS architectures. Feature modeling is an approach in the domain analysis pro-
cess whereby the common and variant properties of a domain or product are elic-
ited and modeled. In addition, the feature model identifi es the constraints on the
legal combinations of features, and, as such, a feature model defi nes the feasible
models in the domain. To design a SaaS application architecture, we fi rst propose
the feature model for SaaS domain that includes the common and variant features.
The feature model has been derived after an extensive literature study to SaaS
architectures. Together with the feature model of SaaS, we defi ne a reference
architecture for SaaS applications that represents the common components and
their interactions with various cloud computing platforms. Using the reference
architecture, we propose an approach for (1) modeling the design space of SaaS
architectures (2) and guiding the selection of these design alternatives based on
the particular requirements. We explain the derivation of the architecture using the
developed toolset.

 The remainder of the chapter is organized as follows. In Sect. 9.2 , we describe
the notion of domain analysis and feature modeling. In Sect. 9.3 , we present the
reference architecture for SaaS based on the literature. Based on the reference
architecture, in Sect. 9.4 , we present the feature model for SaaS that defi nes the
common and variant features. In Sect. 9.5 , we present the tool support for deriving
and generating SaaS application architecture based on the feature model and the
reference architecture. In Sect. 9.6 , we present the related work. Sect. 9.7 concludes
the chapter.

B. Tekinerdogan and K. Öztürk

191

9.2 Feature Modeling

 Domain analysis can be defi ned as the process of identifying, capturing, and organizing
domain knowledge about the problem domain with the purpose of making it reusable
when creating new systems [1 – 4]. The UML glossary provides the following defi nition
of the term domain: Domain is an area of knowledge or activity characterized by a set
of concepts and terminology understood by practitioners in that area.

 A survey of domain analysis methods shows that these methods include the simi-
lar kind of activities. Domain analysis is an important activity in software architec-
ture design methods [5]. Figure 9.1 represents the common structure of domain
analysis methods as it has been derived from survey studies on domain analysis
methods [1 , 3 , 6].

Select/Identify Concerns

Identify the domains

Collect the relevant
information from the domains

Commonality and Variability
Analysis

Provide Domain Model

Evaluate Domain Model

Reuse
Domain Model

[Domain
Modeled]

[Domain Not
Modeled]

[Discovered
New Domains]

Domain Scoping Domain Modeling Domain Reuse

 Fig. 9.1 Common structure of domain analysis methods

9 Feature-Driven Design of SaaS Architectures

192

 Conventional domain analysis methods consist generally of the activities known
as domain scoping and domain modeling . Domain scoping identifi es the domains of
interest, the stakeholders, and their goals and defi nes the scope of the domain.
 Domain modeling is the activity for representing the domain, or the domain model .
The domain model can be represented in different forms such as object-oriented
language, algebraic specifi cations, rules, and conceptual models. Typically, a
domain model is formed through a commonality and variability analysis to concepts
in the domain. A domain model is used as a basis for engineering components
intended for use in multiple applications within the domain.

 One of the popular approaches for domain modeling is feature modeling . A fea-
ture is a system property that is relevant to some stakeholder and is used to capture
commonalities or discriminate between. A feature model is a model that defi nes
features and their dependencies. Feature models are usually represented in feature
diagram (or tables). A feature diagram is a tree with the root representing a concept
(e.g., a software system), and its descendent nodes are features. Relationships
between a parent feature and its child features (or sub-features) are categorized as:

• Mandatory – Child feature is required.
• Optional – Child feature is optional.
• Or – At least one of the sub-features must be selected.
• Alternative (xor) – One of the sub-features must be selected.

 A feature confi guration is a set of features which describes a member of an SPL.
A feature constraint further restricts the possible selections of features to defi ne
confi gurations. The most common feature constraints are:

• A requires B – The selection of A in a product implies the selection of B.
• A excludes B – A and B cannot be part of the same product.

 Besides the basic variability model as defi ned by FODA [3], different extensions
have been proposed. A nice classifi cation of these approaches is defi ned by Sinnema
and Deelstra [7 , 8].

 Feature modeling is a domain modeling technique, which is widely used in the
software product line engineering (SPLE) community. Another domain modeling
technique that is used in software engineering is ontology modeling [9]. A com-
monly accepted defi nition of an ontology is “an explicit specifi cation of conceptual-
ization” [10]. An ontology represents the semantics of concepts and their
relationships using some description language. Basic feature modeling is also a
concept description technique that focuses on modeling both the commonality and
variability. It has been indicated that feature models can be seen as views on ontolo-
gies [9]. For our purposes, since we wish to model both the common and variant
properties of SaaS architectures, adopting feature modeling has been selected as a
feasible modeling approach.

B. Tekinerdogan and K. Öztürk

193

9.3 Reference Architecture for Cloud Computing

 Based on the literature we have studied [11 – 14], the reference architecture for SaaS
is given in Fig. 9.2 . Besides the theoretical papers, we have also looked at documen-
tation of reference architectures as defi ned by SaaS vendors such as Intel [14], Sun
[15], and Oracle [16].

 In principle, SaaS has a multi-tier architecture with multiple thin clients. In
Fig. 9.2 the multiplicity of the client nodes is shown through the asterisk symbol (*).
In SaaS systems the thin clients rent and access the software functionality from
providers on the Internet. As such the cloud client includes only one layer, User
Layer, which usually includes a web browser and/or the functionality to access the
web services of the providers. This includes data integration and presentation. The
SaaS providers usually include the following layers: Distribution Layer , Presentation
Layer , Business Service Layer , Application Service Layer , Data Access Layer , Data
Storage Layer , and Supporting Service Layer .

 Distribution Layer defi nes the functionality for load balancing and routing.
 Presentation Layer represents the formatted data to the users and adapts the user
interactions. The Application and Business Service Layer represents services such
as identity management, application integration services, and communication

Node Internet
Connection

Layer

Data Access Layer

Application and Business
Service Layer

Distribution Layer

Data Storage Layer

Presentation Layer

User Layer

 Fig. 9.2 SaaS reference architecture

9 Feature-Driven Design of SaaS Architectures

194

services. Data Access Layer represents the functionality for accessing the database
through a database management system. Data Storage Layer includes the databases.
Finally, the Supporting Service Layer includes functionality that supports the hori-
zontal layers and may include functionality such as monitoring, billing, additional
security services, and fault management. Each of these layers can be further decom-
posed into sub-layers.

 Although Fig. 9.2 describes the common layers for SaaS reference architecture,
it deliberately does not commit on specifi c application architecture . For example,
the number of clients, the allocation of the layers to different nodes, and the alloca-
tion of the data storage to nodes are not defi ned in the reference architecture. Yet,
while designing SaaS for a particular context, we need to commit on several issues
and make explicit design decisions that defi ne the application architecture. Naturally,
every application context has its own requirements, and likewise these requirements
will shape the SaaS application architecture in different ways. That is, based on the
SaaS reference architecture, we might derive multiple application architectures.

9.4 Feature Model of SaaS

 To support the architect in designing an appropriate SaaS application architecture, a
proper understanding of the SaaS domain is necessary. In this section we defi ne the
SaaS feature model that represents the overall SaaS domain. Figure 9.3 shows the
conceptual model representing the relation between feature model and SaaS
architecture.

 Before a particular SaaS architecture can be defi ned, a domain engineering pro-
cess is defi ned in which the family feature model is defi ned, which represents the
features of the overall SaaS domain. The application feature model is derived in the

Application Engineering

Domain Engineering

SaaS
Family Feature Model

SaaS
Reference Architecture

SaaS
Application Feature

Model

SaaS
Application Architecture

instance
of

instance
of

supports

supports

 Fig. 9.3 Conceptual model representing relation between feature model and SaaS architecture

B. Tekinerdogan and K. Öztürk

195

application engineering process and represents the features for a particular SaaS
project from the family feature model. The features in the feature model typically
refer to the architectural elements in the SaaS architecture. As discussed in the pre-
vious section, we also distinguish between SaaS reference architecture and SaaS
application architecture . For designing the SaaS application architecture, fi rst the
required features need to be selected from the family feature model resulting in
the application feature model. The application feature model will be used to support
the design of the SaaS application architecture. In the following sections, we elaborate
on the family feature model.

9.4.1 Top-Level Feature Model

 The top-level feature diagram of SaaS that we have derived is shown in Fig. 9.4 . The
key part represents the different types of features including optional , mandatory ,
 alternative , and or features [17]. Note that the features in Fig. 9.4 denote the layers
in the SaaS reference architecture as defi ned in Fig. 9.2 . All the layers except the
Support Layer have been denoted as mandatory features. The Support Layer is
defi ned as optional since it might not always be provided in all SaaS applications.
Each of these layers (features) can be further decomposed into sub-layers. The fea-
ture diagram for each of the layer is shown in Fig. 9.5 . We explain each layer in the
following subsections.

9.4.1.1 User Layer

 User Layer is the layer that renders the output to the end user and interacts with the
user to gather input. In principle, the User Layer might include a web browser or

KEY
feature

optional
feature

mandatory
feature

alternative
features

User
Layer

SaaS
Architecture

Distribution
Layer

Presentation
Layer

Application
Layer

Data Storage
Layer

Data Access
Layer

Supporting
Services

Layer

or sub-
features

 Fig. 9.4 Top-level family feature model for SaaS

9 Feature-Driven Design of SaaS Architectures

196

Rich Internet Application (RIA) or both of these (or features). RIA is especially
used on mobile platforms.

9.4.1.2 Distribution Layer

 This layer is the intermediate layer between the Internet and the SaaS application.
The main concerns of the layer are scalability, availability, and security. The manda-
tory features of this layer are load balancers and fi rewalls [18].

Load
Balancer

Distribution
Layer

Type Loadbalancer
Firewall

Strategy

Firewall

Hardware
Based

Software
Based

Passive Dynamic

Single Farm

Round
Robin

FallOver Random Weighted
Random

Fastest
Response Time

Least
Busy

Transfer
Throughput

IP
Sticky

Cookie
Sticky

Web
Browser

User Layer

RIA

Web
Browser

Presentation
Layer

Web Proxy
Server

Communication

Application
Layer

IntegrationESB Orchestration Business Rule
Engine

Metadata
Management

Identity
Management

Application
Server

DBMS

Separate
DB

Data Access
Layer

Multi-Tenancy

Shared DB
Separate
Schema

Shared DB
Shared
Schema

SAN

Application
Database

Caching

Data Storage
Layer

Directory
Service

Clustering

Metadata
Repository

DBFile

SNPM PMP
Monitoring

Supporting Services
Layer

Metering

 Fig. 9.5 Feature diagram for layers

B. Tekinerdogan and K. Öztürk

197

 A fi rewall inspects the traffi c and allows/denies packets. In addition to this, fi re-
walls provide more features like intrusion detecting, virtual private network (VPN),
and even virus checking. The Distribution Layer can have a single fi rewall or a
fi rewall farm. A fi rewall farm is a group of connected fi rewalls that can control and
balance the network traffi c.

 Load balancers divide the amount of workload across two or more computers to
optimize resource utilization and increase response time. Load balancers are also
capable of detecting the failure of servers and fi rewalls and repartitioning the traffi c.
Load balancers have the mandatory features of Type and Strategy and an optional
feature Load Balancer.Firewall. There are two types of load balancers, hardware
based and software based . Load-balancing strategies decide how to distribute
requests to target devices. Passive load-balancing strategies use already defi ned
strategies regardless of the run time conditions of the environment. Some of the
most used passive strategies are Round-Robin, Failover, Random, and Weighted
Random . Dynamic load-balancing strategies are aware of information of the targets
and likewise route the requests based on traffi c patterns. Some of the most used pas-
sive strategies are Fastest Response Time, Least Busy, Transfer Throughput, IP
Sticky, and Cookie Sticky .

 The optional Load Balancer.Firewall can be used as fi rewall by providing both
packet fi ltering and stateful inspection. Using load balancer as a fi rewall can be an
effective solution for security according to network traffi c and cost requirements.
This feature excludes the Distribution Layer.Firewall feature.

9.4.1.3 Presentation Layer

 The Presentation Layer consists of components that serve to present data to the end
user. This layer provides processes that adapt the display and interaction for the
client access. It communicates with application layer and is used to present data to
the user.

 The Presentation Layer feature includes two sub-features, the mandatory web
server and optional web proxy server features. A web server handles HTTP requests
from clients. The response to this request is usually an HTML page over HTTP.
Web servers deal with static content and delegate the dynamic content requests to
other applications or redirect the requests. Web proxy server can be used to increase
the performance of the web servers and Presentation Layer, caching web contents
and reducing load is performed by web proxy servers. Web proxy servers can also
be used for reformatting the presentation for special purposes as well as for mobile
platforms.

9.4.1.4 Application Layer

 The Application Layer is the core layer of the SaaS architecture including the sub-
features business logic and main functionalities, Identity Management, Orchestration,
Service Management, Metadata Management, Communication, and Integration.

9 Feature-Driven Design of SaaS Architectures

198

Especially in the enterprise area, SaaS platforms are usually built on SOA technolo-
gies and web services. Application Server , Integration , Metadata Management ,
 Identity Management , and Communication are mandatory features for the applica-
tion layer. In case of using SOA, some other features – ESB , Orchestration , and
 Business Rules Engine – are used in this layer. The sub-feature diagrams of the
features of the Application Layer are shown in Fig. 9.6 . In the following subsec-
tions, we describe these features in more detail.

9.4.1.5 Application Server

 An Application Server is a server program that handles all application operations
between users and an organization’s back end business applications or databases.
The Application Server’s mission is to take care of the business logic in a multi-tier
architecture. The business logic includes usually the functions that the software
performs on the data. Application Servers are assigned for specifi c tasks, defi ned by
business needs. Its basic job is to retrieve, handle, process, and present data to the
user interface and process any input data whether queries or updates, including any
validation and verifi cation and security checks that need to be performed.

 SaaS applications have to have continuous uptime. Users around the world can
access the application anytime. Application failure means customer and monetary
loss. The application should be prevented from single point of failure. In addition to
availability issues, there are performance and scalability capabilities to overcome

Asymmetric

Clustering

Symmetric

Application
Server

Business
Service

Common

Method

Certified
Partner

Integration

Service

Specific Integration Web
Service

Identity
Model

Identity
Management

Single
Sign-On Isolated Federated

Directory
Management

Name
space

Directory
Service

PKI
Based

Token
Based

Secure
Credential

Caching

Credential
Synchronization

Kerberos
Based

PKI
Based

SAML
Based

Kerberos Cookie Server
Side

Client
Side

SAMLSAML

SMTP

Protocol

SNPP

Communication

MTA

SMPP

 Fig. 9.6 Sub-feature diagrams for application layer

B. Tekinerdogan and K. Öztürk

199

for SaaS applications. Integrating a number of computers to provide a unifi ed virtual
resource can solve these problems. This technique is called server clustering. There
are two techniques for server clustering: asymmetric and symmetric . In asymmetric
clustering, a standby server exists to take control in case another server fails. In
symmetric clusters, every server in the cluster does the actual job. The fi rst tech-
nique provides more available and fault-tolerant system but the latter is more
cost-effective.

9.4.1.6 ESB

 When we discuss SaaS applications and service-oriented architecture, the require-
ment is providing an infrastructure for services to communicate, interact, and trans-
form messages. Enterprise Service Bus (ESB) is a platform for integrating services
and provides enterprise messaging system. Using an ESB system does not mean
implementing a service-oriented architecture, but they are highly related and ESB
facilitates SOA.

9.4.1.7 Orchestration

 Orchestration is a critical mission in SOA environment. A lot of tasks should be
organized to perform a process. Orchestration provides the management, coordina-
tion, and arrangement of the services. BPEL is, for example, an Orchestration lan-
guage that defi nes business processes. Some simple tasks may be performed by
ESB but more complex business processes could be defi ned by BPEL. To interpret
and execute BPEL, a BPEL engine is needed.

9.4.1.8 Metadata Management

 SaaS has a single instance, multi-tenant architecture. Sharing the same instance to
many customers brings the problem of customization. In SaaS architecture, custom-
ization is done using metadata. Metadata is not only about customization (e.g., UI
preferences), it is also intended to provide confi guration of business logic to meet
customers need. Updating, storing, and fetching metadata is handled through meta-
data services [30]. This feature requires Metadata Repository feature.

9.4.1.9 Business Rules Engine

 As mentioned before, SaaS applications can be customized and confi gured by meta-
data. Workfl ow may differ for each customer. Business Rules Engine is responsible
of metadata execution. It consists of its own rule language, loads the rules, and then
performs the operations.

9 Feature-Driven Design of SaaS Architectures

200

9.4.1.10 Integration

 In the context of SaaS, all the control, upgrade, and maintenance of user applica-
tions and data are handled by SaaS providers. An important challenge in SaaS is the
data integration. SaaS applications usually need to use client data which resides at
the client’s node. On the other hand, each client may use more than one SaaS appli-
cation or on-premise application using the same data. The data may be shared
among several applications and each application may use different part of it or in
different formats. Manipulating the data will usually have an impact on the other
applications. Data accuracy and consistency should be provided among those appli-
cations. Re-entering or duplicating the data for any application is not a feasible
manner to provide data.

 There are three different approaches for providing consistent data integration
including common integration , specifi c integration , and certifi ed partner integra-
tion . In the common integration approach, services are provided for all clients. This
feature requires Integration.Services.Web Services feature. In the specifi c integra-
tion, services are customized for each customer. This feature requires Integration.
Services.Integration Services feature. Finally, in the Certifi ed Partner approach the
SaaS vendor delegates the integration to another vendor which is a specialist for
SaaS integration. The SaaS vendor still needs to provide web services, but it leaves
the control to other entities and focuses itself on the application. This feature also
requires Integration.Services.Web Services feature.

 The Integration feature describes either Integration Service or Web Service : In
 Integration Service approach, the SaaS vendor provides custom integration services
for customers. Although this is the easiest way for customers, it is hard to manage
adding integration service for different needs for vendors, and increasing number of
customers causes scalability problems. In the Web Service approach, the SaaS ven-
dor provides a standard approach for customers as web services. The customers
themselves take responsibility for SaaS integration. Compared to the Integration
Service approach, customers have to do much more and need extensive experience.
On the other hand, this is a more scalable solution for vendors.

9.4.1.11 Identity Management

 Identity Management deals with identifying individuals in a system and controlling
access to the resources in the system by placing restrictions on the established iden-
tities of the individuals [32]. The Directory Management is responsible for manag-
ing the identities. Identify Management includes two mandatory features Identity
Model and Directory Management . Identity Model can be Single Sign-On , Isolated ,
or Federated . Isolated Identity Management : The most common and simplest
Identity Management model is the isolated one. Hereby, each service provider asso-
ciates an identity for each customer. Despite its simplicity, this model is less man-
ageable in case of the growth of number of users who should remember their log-in
and passwords to their accounts for each service. Single Sign-On is a centralized

B. Tekinerdogan and K. Öztürk

201

Identity Management model, which allows users to access different systems using a
single user ID and password.

 Single Sign-On Identity Management model [19] can be PKI - Based , SAML -
Based , Token - Based , Credential Synchronization , or Sec u re Credential Caching .
SAML stands for Security Assertion Markup Language and defi nes the XML-based
security standard to enable portable identities and the assertion of these identities.
The Token - Based approach can be either based on Kerberos or Cookie . The Secure
Credential Caching can be on the Server Side or Client Side .

 The Federated Identity Model is very close to Single Sign-On but defi ned Identity
Management across different organizations [11]. There are three most used
approaches, Kerberos-based Federation , PKI-based Federation , or SAML-based
Federation . Directory Management feature includes two mandatory features,
 Namespace and Directory Service. Namespace maps the names of network resources
to their corresponding network addresses. Directory Service represents the provided
services for storing, organizing, and providing access to the information in a direc-
tory (e.g., LDAP).

9.4.1.12 Communication

 SaaS vendor needs to provide a communication infrastructure both for inbound and
outbound communication. Notifi cation, acknowledging customers, sending feed-
backs, and demanding approvals are useful for satisfying users. The most common
approach for communication is e-mailing. To transfer mails between computers, a
 Mail Transfer Agent (MTA) can be used which requires Simple Mail Transfer
Protocol (SMTP). Besides mailing, other protocols such as Short Message Peer-to-
Peer Protocol (SMPP) and Simple Network Paging Protocol (SNPP) can be used .

9.4.1.13 Data Access Layer

 This layer provides the database management system (DBMS) consisting of soft-
ware which manages data (database manager or database engine), structured artifact
(database), and metadata (schema, tables, constraints, etc.). One of the important, if
not the most important, SaaS feature is multi-tenancy [20 , 21]. Multi-tenancy is a
design concept where a single instance of software is served to multiple consumers
(tenants). This approach is cost saving, scalable, and easy to administrate, because
the vendor has to handle, update or upgrade, and run only single instance. Multi-
tenancy is not only about data; this design can be applied in all layers, but the most
important part of the multi-tenancy is multi-tenant data architecture. Based on the
latter, different kinds of multi-tenancy can be identifi ed. Multi-tenancy with
 Separate Databases means that each tenant has its own data set which is logically
isolated from other tenants. The simplest way to data isolation is storing tenant data
in separate database servers. This approach is best for scalability, high performance,
and security but requires high cost for maintenance and availability. In the Shared
Database, Separate Schemas approach, a single database server is used for all

9 Feature-Driven Design of SaaS Architectures

202

tenants. This approach is more cost-effective but the main disadvantage is restore is
diffi cult to achieve. Finally, the Shared Database, Shared Schema approach involves
using one database and one schema for each tenants’ data. The tables have addi-
tional columns, tenant identifi er column, to distinguish the tenants. This approach
has the lowest hardware and backup costs.

9.4.1.14 Data Storage Layer

 The Data Storage Layer includes the feature for metadata storage, Application
Database, and Directory Service. Metadata fi les can be stored either in a database or
in a fi le-based repository. Application Database includes the sub-features of Storage
Area Network (SAN), Clustering , and Caching [20]. SAN is a dedicated storage
network that is used to make storage devices accessible to servers so that the devices
appear as locally attached to the operating system. SAN is based on fi ber channel
and moves the data between heterogeneous servers.

 Clustering is interconnecting a group of computers to work together acting like a
single database to create a fault-tolerant, high-performance, scalable solution that is
a low-cost alternative to high-end servers. By caching, disk access and computation
are reduced while the response time is decreased.

 Directory Service stores data in a directory to let the Directory Service look up
for Identity Management. This data is read more often than it is written and can be
redundant if it helps performance. Directory schemas are defi ned as object classes,
attributes, name bindings, and namespaces.

9.4.1.15 Supporting Services Layer

 Supporting Services Layer is a crosscutting layer that provides services for all layers.
As known, SaaS applications have quality attributes such as scalability, performance,
availability, and security. To keep the applications running effi ciently and healthy,
the SaaS system needs to have monitoring system to measure metrics. The monitor-
ing infrastructure can detect failures, bottlenecks, and threats and alert the adminis-
trators or trigger automatic operations. Furthermore, SaaS systems may be built on
service-oriented architecture and may need metering process for service level agree-
ments and billing. Example metrics are CPU usage, CPU load, network traffi c, mem-
ory usage, disk usage, attack rate, number of failures, and mean time to respond.

9.5 Tool Support and Example

 Although, the steps of the process in the previous section can be performed manu-
ally, we have developed a set of tools to assist the SaaS application design process.
Figure 9.8 depicts the data fl ow and order of the steps including the tools. In the
following subsections, we explain the tool support activities together with a running
example.

B. Tekinerdogan and K. Öztürk

203

9.5.1 Feature Modeling

 An important part of the process consists of feature modeling. We have used the tool
XFeature (developed at ETH-Zürich) [33] to defi ne both the SaaS reference feature
model and to derive the application feature model. In Fig. 9.8 , the family feature
modeling is defi ned as step 1, while the application feature modeling is defi ned
in step 4.

 Using XFeature, it is possible to edit and extend the feature diagram. XFeature
has a graphical editor and represents the hierarchical structure visually. The resulted
family feature model is stored in XML fi les. The family feature model is stored in
the fi le SaaS-FM.xfm; the application feature model is stored in Application-FM.
xfm. XFeature allows defi ning constraint through the features. In case of deriving
an application feature model from the family feature model, the tool checks these
constraints and warns the user if there is any inconsistency. So, XFeature guarantees
that the application feature model is valid and consistent.

User Layer

User.Client
User.Certified Partner

Distribution Layer

Distribution Layer.Firewall
Load Balancer.Technique.Direct Routing
Load Balancer.Type.Hardware Based
Load Balancer.Pairing

Application and Business Service Layer

Application Layer.Enterprise Service Bus
Application Layer.Orchestration
Identity Management.LDAP
Identity Management.Single Sign On
Single Sign On.Kerberos
Single Sign On.SAML
Communication Server.Protocol.SMTP
Communication Server.Reporting
Application Server.Clustering
Integration.Common Integration
Integration.Web Service

Data Access Layer

Data Access.Cache Server
Data Access.Multitenacy.Shared

Data Storage Layer

Data Storage.Storage Area Network

 Fig. 9.7 Example feature model derived from family feature model

9 Feature-Driven Design of SaaS Architectures

204

 In Fig. 9.7 , we illustrate the feature modeling example with selected features
based on the family feature model.

 Note that in Fig. 9.7 there are no variant features; the features for the specifi c
business requirements have determined the selected features. As an example, we
can observe that for the Distribution Layer the features Firewall, Direct Routing,
Hardware Based, and Paring have been selected.

1XFeature Tool
Define SaaS Family Feature

Model

DD Rule Editor Tool
Define Design Decisions

SaaS-FM.xfm

2

creates

Decisions.xml

creates

Application
Decisions.xml

used by

derives

Application-
FM.xfm

4

creates

input for

5

ADL-
Instance.xml

derives

6

Deployment Editor
Generate Deployment

Diagram

Architecture
Diagram

input for

3

Feature Analyzer Tool
Extract Application

Design Rules

ADL Instance Generator
Tool

Generate Architectural
Description

generates

input for

Network Simulator
Generate Network

Simulation

7

Network
Simulation

generates

input for

 Fig. 9.8 Tool support data fl ow

B. Tekinerdogan and K. Öztürk

205

9.5.2 Design Rule Modeling

 To represent design rules we have developed a tool called Design Rule Editor which
is shown in Fig. 9.9 . The tool supports the earlier defi ned Design Rule Defi nition
Language, and we can use it to specify the design rules for the features in the family
feature model.

 Design Rule Editor uses the SaaS Family Feature Model fi le (SaaS-FM.xfm)
created in the previous step. All features from the feature model are listed, and the
user selects one of the features and defi nes the rule about that feature.

 As an example, in Fig. 9.9 , we show the defi nition of the rule “if Integration
Model.Common_Integration is selected then add execution ‘Web Service’ on device
Integration Server.” In this case, the designer aims to provide web services for data
integration to its clients instead of implementing customer-specifi c integration ser-
vices, and the rule dictates that there should be a piece of software as web services
on the specifi ed device. In the Display tab of the tool, the human-readable form of
the rule is showed and the user can add note or a description of the rule. With this
rule editor we have specifi ed all the reference rules based on the family feature
model which is stored in the fi le Decisions.xml as shown in Fig. 9.8 .

 Fig. 9.9 Design decision rule editor

9 Feature-Driven Design of SaaS Architectures

206

9.5.3 Associating Design Decisions to Features

 In the previous steps we have generated an application feature model (stored in
Application-FM.xfm) and we have defi ned the design decision rules (stored in
Decisions.xml). In this step we use the Feature Analyzer Tool to determine which
design rules will be used for the features of the application feature model. The
Feature Analyzer Tool fi rst reads the selected features from the Application-FM.
xfm fi le. Then it checks the condition parts of the design decision rules to determine
whether there are matching rules. After the tool scans all the design rules, it brings
only the matching ones.

 For the example application feature model in Fig. 9.9 , the design rules have been
derived by checking the reference design rules and matching it with the selected
features. We show, as an example, the set of the derived rules for the Application
and Business Layer and the Data Access and Storage Layer features, as shown in
Fig. 9.10 . After correlation of the design rules and features, the next step is creating
an instance of the family, which is called the application model.

9.5.4 Generation of the Application Architecture

 In this study, we aimed to provide guidance for reasoning about alternative SaaS
architectures. So far, we were able to defi ne an application model from the family,
and we need to represent the corresponding architecture of the application model.

 Fig. 9.10 Derived rules based on the selected features in Fig. 9.9

B. Tekinerdogan and K. Öztürk

207

 The design decision rules, we mentioned before, are useful for exposing the
architecture. Since application model derives from the family model, it also inherits
the existing attributes. Within the application model features, there are references to
design rules as attributes. Here, we introduce another tool, Feature Analyzer, which
takes as input both the application model fi le (Application-FM.xfm) and design
decision rules fi le (Decisions.xml). The tool automatically extracts the attributes of
the features, fi nds references to design rules, and links it to those rules. As a result,
all features of the application model are represented graphically as a treelike hierar-
chical structure and the corresponding design decision rules are displayed.

 As shown in Fig. 9.11 , on the left side of the panel, the features are displayed for
a specifi c alternative application model. In the case of selecting a feature, the cor-
responding design rule is displayed at the right side. Remember that Design Rule
Editor allows adding notes for the features and the notes are also displayed on the
panel.

 The next step is transforming these design rules to an architecture specifi cation.
For this, we have developed a simple architecture description language (ADL) [22].
This language has only basic types for describing the architecture: device, execu-
tion, and connection. The ADL instance is used internally, that is to say, the user
does not write a description manually. We have developed another tool, Architecture
Generator , which takes application-specifi c design rules and converts them to archi-
tectural description in XML format. A part of the architectural description is shown
in Fig. 9.12 which is generated by the Architecture Generator Tool.

 Fig. 9.11 Feature analyzer tool

9 Feature-Driven Design of SaaS Architectures

208

9.5.5 Generating Deployment Diagram for SaaS Architecture

 The fi nal step is showing a graphical view of the architecture. Deployment diagram
is a static view of the hardware, the software running on that hardware, and the
relationship between them. We have chosen the deployment view of the architecture
to display, because deployment diagram is also very useful for system engineering.
It can be used for analyzing quality attributes such as scalability, performance,
maintainability, and portability [23]. We have developed an Eclipse plug-in [24], an
editor, which is capable of both drawing deployment diagram automatically from
ADL instance and enabling user for editing the generated diagram.

 Similar to Protégé [8], which is a free, open source ontology editor, Eclipse is a
framework for which various other projects can develop plug-ins. Protégé provides
tool support for ontology modeling but feature modeling and the mapping to archi-
tecture design is missing.

 We used Model-Driven Architecture (MDA) and Eclipse Graphical Modeling
Framework (GMF) [25] for developing a deployment diagram editor. MDA pro-
vides high-level abstraction and platform-independent modeling approach and uses
a Domain-Specifi c Language. GMF helps to defi ne domain models and represent
them graphically based on MDA.

 In our ADL, we have basic elements to defi ne architecture. To develop the
deployment diagram, we also need Domain-Specifi c Language (DSL) elements that
correspond to the ADL elements. Thus, device, execution, and connector model and
meta-model fi les are defi ned in GMF. By using the model and meta-model fi les,
GMF generates the tool code.

 The graphical editor generates the deployment diagram automatically from the
architectural description which is generated in the previous step. First, the editor
parses the ADL instance components and then determines the layout of the compo-
nents and arranges the position of the components.

 After the deployment diagram is generated automatically, the user can modify
the diagram arbitrary. Figure 9.13 illustrates the visual representation of the archi-
tecture by the deployment diagram editor for the example application feature model
of Fig. 9.9 and the derived application design rules of Fig. 9.10 .

 Fig. 9.12 An example of ADL instance

B. Tekinerdogan and K. Öztürk

209

9.6 Related Works

 Despite its relatively young history, different surveys have already been provided in
the literature on cloud computing and many chapters have been published on SaaS.
An example survey chapter is provided by Goyal and Dadizadeh [26]. However, to
the best of our knowledge, no systematic domain analysis approach has been carried
out to derive a feature model for SaaS.

 La and Kim [27] propose a systematic process for developing SaaS systems
highlighting the importance of reuse. The authors fi rst defi ne the criteria for design-
ing the process model and then provide the meta-model and commonality and vari-
ability model. The metamodel defi nes the key elements of SaaS. The variability
model is primarily represented as a table. The work focuses more on the general
approach. The metamodel could be complementary to the reference architecture in
this chapter and as presented by SaaS providers. Although the goal seems similar,
our approach appears to be more specifi c and targeting the defi nition of a proper
modeling of the domain using feature modeling.

 Fig. 9.13 Deployment diagram editor

9 Feature-Driven Design of SaaS Architectures

210

 Godse and Mulik [28] defi ne an approach for selecting SaaS products from mul-
tiple vendors. Since the selection of the feasible SaaS product involves the analysis
of various decision parameters, the problem is stated as a multi-criteria decision-
making (MCDM) problem. The authors adopt the Analytic Hierarchy Process
(AHP) technique for prioritizing the product features and for scoring of the prod-
ucts. The criteria that are considered in the AHP decision process are functionality ,
 architecture , usability , vendor reputation , and cost . Our work is also focused on
selecting the right SaaS product, but it considers the design of the SaaS architecture
based on feature modeling. The selection process defi nes the selection of features
and not products. However, in our approach we did not outline the motivation for
selecting particular features. For this we might add additional criteria to guide the
architect also in selecting the features. We consider this as part of our future work.

 Nitu [29] indicates that despite the fact that SaaS application is usually
devel oped with highly standardized software functionalities to serve as many cli-
ents as possible, there is still a continuous need of different clients to confi gure SaaS
for their unique business needs. Because of this observation, SaaS vendors need to
take a well-designed strategy to enable self-serve confi guration and customization
by their customers without changing the SaaS application source code for any indi-
vidual customer. The author explores the confi guration and customization issues
and challenges to SaaS vendors and distinguishes between confi guration and cus-
tomization. Further a competency model and a methodology framework is proposed
to help SaaS vendors to plan and evaluate their capabilities and strategies for service
confi guration and customization. The work of Nitu considers the confi guration of
the system after the system architecture has been developed. We consider our work
complementary to this work. The approach that we have presented focuses on early
customization of the architecture to meet the individual client requirements. The
approach as presented by Nitu could be used in collaboration with our approach,
that is, by fi rst customizing the architecture based on the potential clients and then
providing confi gurability and customization support for the very unique business
needs.

9.7 Conclusion

 Different research topics have been addressed in the literature concerning cloud
computing in general and SaaS in particular. In general, the design of the SaaS
architecture from a reference architecture however seems to have not been directly
addressed. In this chapter we have provided a domain-driven design approach to
model both the SaaS domain and to support the SaaS architect in deriving an
application architecture. The mechanism for distinguishing the modeling between
family modeling and application modeling appeared to be very useful. In the family
modeling part, we actually applied a domain engineering process and defined
the reference architecture, the family feature model, and the reference design rules.
The reference architecture actually defi nes the space of application architectures.

B. Tekinerdogan and K. Öztürk

211

The family feature model defi nes the possible features for SaaS applications, and it
appeared that we can relate these to specifi c architectural decisions. Based on the
derived architectural decisions, we could derive the specifi c application architecture.
The approach has been supported by a set of tools to support the selection of the
feature model and the automatic generation of the application architecture.

 Hereby, the application features, the derived design rules, and the eventual appli-
cation architecture are linked to each other, and as such the design decisions and the
requirements feature selection for the application architecture can be easily traced.
By defi ning multiple application architectures based on different application feature
models, we can even compare multiple alternatives and based on this select the most
feasible alternative. We can derive several important lessons from this study. First of
all, feature modeling appeared to be very useful to make explicit the common and
variant concerns of SaaS. This is not only important for novice designers but also
for experienced architects who wish to derive an application architecture. In addi-
tion, the corresponding tool support appeared to be necessary to cope with the com-
plexity of the domain and the generation process. In our future work, we will focus
on multiple architecture views [31], enhance the tool further, and apply the tool in a
real industrial context.

 References

 1. Aksit, M., Tekinerdogan, B., Marcelloni, F., Bergmans, L.: Deriving object-oriented frame-
works from domain knowledge. In: Fayad, M., Schmidt, D., Johnson, R. (eds.) Building
Application Frameworks: Object-Oriented Foundations of Framework Design, pp. 169–198.
Wiley, New York (1999)

 2. Arrango, G.: Domain analysis methods. In: Schäfer, W., Prieto-Díaz, R., Matsumoto, M. (eds.)
Software Reusability, pp. 17–49. Ellis Horwood, New York (1994)

 3. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, A.: Feature-Oriented Domain Analysis
(FODA) feasibility study. Technical Report, CMU/SEI-90-TR-21. Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, November 1990

 4. Tekinerdogan, B., Aksit, M.: Synthesis based software architecture design. In: Aksit, M. (ed.)
Software Architectures and Component Technology: The State of the Art in Research and
Practice, pp. 143–173. Kluwer Academic, Boston (2001)

 5. Tekinerdogan, B., Aksit, M.: Classifying and evaluating architecture design methods. In:
Aksit, M. (ed.) Software Architectures and Component Technology: The State of the Art in
Research and Practice, pp. 3–27. Kluwer Academic, Boston (2001)

 6. Czarnecki, C., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, Boston (2000)

 7. Sinnema, M., Deelstra, S.: Classifying variability modeling techniques. Inf. Softw. Technol.
 49 (7), 717–739 (2007)

 8. Protégé: Offi cial web site. http://protege.stanford.edu/ . Accessed 2012
 9. Czarnecki, K., Kim, C.H.P., Kalleberg, K.: Feature models are views on ontologies. In:

Proceedings of the 10th International on Software Product Line Conference, 2006. pp. 41–51.
IEEE Computer Society (2006)

 10. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing.
Technical Report KSL93-04. Stanford University, Stanford, August 1993

 11. Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail. Microsoft, MSDN
Architecture Center (2006)

9 Feature-Driven Design of SaaS Architectures

http://protege.stanford.edu/

212

 12. Wikipedia: Cloud computing. http://en.wikipedia.org/wiki/Cloud_computing
 13. Laplante, P.A., Zhang, J., Voas, J.: What’s in a name – distinguishing between SaaS and SOA.

IT Prof. 10 (3), 46–50 (2008)
 14. Spence, C., Devoys, J., Chahal, S.: Architecting software as a service for the enterprise. IT@

Intel White Chapter url: http://www.intel.com/content/dam/doc/white-paper/cloud-comput-
ing-intel-it-architecting-software-as-a-service-paper.pdf (2009)

 15. Sun Cloud Computing Primer: http://www.scribd.com/doc/54858960/Cloud-Computing-
Primer . Accessed 2011

 16. Joshi, S.: Architecture for SaaS Applications – Using the Oracle SaaS Platform. Oracle White
Chapter. http://www.oracle.com/us/technologies/saas/ (2009)

 17. Lee, K., Chul Kang, K., Lee, J.: Concepts and guidelines of feature modeling for product line
software engineering. In: Proceedings of the 7th International Conference on Software Reuse:
Methods, Techniques, and Tools, pp. 62–77, 15–19. Springer, April 2002

 18. Kopparapu, C.: Load Balancing Servers, Firewalls, and Caches. Wiley, New York (2002)
 19. de Clercq, J.: Single sign-on architectures. In: Proceedings of the International Conference on

Infrastructure Security, pp. 40–58, 1–3. Springer, October 2002
 20. Chong, F., Carraro, G.: Building Distributed Applications: Multi-Tenant Data Architecture.

MSDN Architecture Center. Microsoft Developer Network (MSDN), http://msdn.microsoft.
com/en-us/library/aa479086.aspx (2006)

 21. Kwok, T., Nguyen, T., Lam, L.: A software as a service with multi-tenancy support for an
electronic contract management application. In: Proceedings of the 2008 IEEE International
Conference on Services Computing – Vol. 2 (SCC ’08), vol. 2, pp. 179–186. IEEE Computer
Society, Washington, DC (2008)

 22. Medvidovic, N., Taylor, R.N.: A classifi cation and comparison framework for software archi-
tecture description languages. IEEE Trans. Softw. Eng. 26 (1), 70–93 (2000)

 23. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction in
software development: a survey. IEEE Trans. Softw. Eng. 30 (5), 295–310 (2004)

 24. Eclipse offi cial web site. http://www.eclipse.org . Accessed 2012
 25. Eclipse: Modeling Framework web site. http://www.eclipse.org/gmf/ . Accessed 2012
 26. Goyal, A., Dadizadeh, S.: A survey on Cloud computing. Technical Report. University of

British Columbia, Vancouver (2009)
 27. La, H.J., Kim, S.D.: A systematic process for developing high quality SaaS Cloud services. In:

Proceedings of the 1st International Conference on Cloud Computing. Springer LNCS, vol.
5931/2009, pp. 278–289. Springer, Berlin/Heidelberg (2009)

 28. Godse, M., Mulik, S.: An approach for Selecting Software-as-a-Service (SaaS) product. In:
IEEE CLOUD, pp. 155–158 (2009)

 29. Nitu: Configurability in SaaS (software as a service) applications. In: Proceedings of
the 2nd India Software Engineering Conference (ISEC ’09), pp. 19–26. ACM, New
York (2009)

 30. Brandt, S.A., Miller, E.L., Long, D.D.E, LanXue: Effi cient metadata management in large
distributed storage systems. In: Mass Storage Systems and Technologies, 2003. (MSST 2003).
Proceedings. 20th IEEE/11th NASA Goddard Conference on, vol., no., pp. 290, 298, 7–10
(2003)

 31. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd edn. Addison-
Wesley, Boston (2010)

 32. FIDIS: Structured Overview on Prototypes and Concepts of Identity Management Systems.
Future of Identity in the Information Society (No. 507512)

 33. XFeature: Offi cial web site. http://www.pnp-software.com/XFeature . Accessed 2012

B. Tekinerdogan and K. Öztürk

http://en.wikipedia.org/wiki/Cloud_computing
http://www.intel.com/content/dam/doc/white-paper/cloud-computing-intel-it-architecting-software-as-a-service-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/cloud-computing-intel-it-architecting-software-as-a-service-paper.pdf
http://www.scribd.com/doc/54858960/Cloud-Computing-Primer
http://www.scribd.com/doc/54858960/Cloud-Computing-Primer
http://www.oracle.com/us/technologies/saas/
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://www.eclipse.org/
http://www.eclipse.org/gmf/
http://www.pnp-software.com/XFeature

213Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_10, © Springer-Verlag London 2013

 Abstract Cloud computing provides a wide range of core infrastructure services
such as compute and storage, along with building blocks which can be consumed
from both on-premise environments and the Internet to develop cloud-based appli-
cations. It offers Platform as a Service capability which allows applications to be
built, hosted and run from within managed data centres using programmable APIs
or interoperable services exposed by the platform. The objective of this chapter is to
study the effects of cloud adoption on software development projects that use agile
methodologies. Agile methodologies involve iterative and incremental approaches
to software development. The ubiquitous nature of cloud computing makes it an
enabler of agile software development. This chapter highlights various aspects of
cloud provision that can catalyse agile software development. The chapter provides
directions for agile teams that are keen on exploiting the potential of cloud to allevi-
ate the challenges currently faced by them. A case study of an agile development
team which adopted cloud is discussed to articulate the real-time benefi ts and chal-
lenges in adopting the cloud environment.

 Keywords Cloud computing • Agile software development • Distributed develop-
ment • Collaboration • Software testing

10.1 Introduction

 Agile is a software development methodology that dramatically reduces the lead time
for development. Features and capabilities demanded by software product owners
and end users of the software are made available to them almost as rapidly as they

 Chapter 10
 Impact of Cloud Adoption on Agile Software
Development

 Sowmya Karunakaran

 S. Karunakaran (�)
 Department of Management Studies , Indian Institute of Technology (IIT) , Madras , India
 e-mail: sowmya.karu@gmail.com

214

need them. Agile teams achieve this by breaking down the prioritised requirements
backlog, commonly referred to as the product backlog, into smaller chunks achiev-
able in 2–4 weeks’ time frame. The software development team then focuses on
each chunk individually. As each chunk is designed, coded and tested, it forms an
 iteration . Each iteration entails release of potentially shippable software that can be
made available to end users immediately. The software development team moves on
to the subsequent iteration. At every point during development, product owners,
developers, testers, analysts, architects and users collaborate. A relationship that is
built on trust and transparency prevails between the software development team and
the users/product owners. Above all, no useless functionality is built.

 Agile and cloud computing can be considered complementary concepts.
According to Computer Sciences Corporation (CSC) Cloud Usage Index survey,
21 % of the respondents quote agility as the driver for cloud adoption [1]. One of the
key benefi ts of agile development methodologies is faster time to market. Similarly,
the cloud can catalyse the development process. This implies that new features and
capabilities can now be made available to users instantly, as soon as the software
development team has implemented them. There is no necessity for detailed, lengthy
deployment procedures, patches and multiple installations. Integration issues are
handled, change management is addressed and overall risks are minimised. Users
can use the new features and updates seamlessly.

 The following sections of this chapter provide insights into how cloud positively
impacts agile software development. Collaboration is critical for success of any
agile project. The fi rst section deals with collaboration and how cloud enables col-
laboration among agile teams that are geographically dispersed. The impact of
cloud on various steps involved in a typical software project like setting up infra-
structure , development, testing, deployment and project management is discussed in
subsequent sections from the context of agile. The later sections focus on cost and
time implications of cloud on agile teams and the potential challenges in imple-
menting cloud for agile projects. A case study of an agile team that adopted cloud is
discussed to understand the real-time benefi ts and issues. The last section provides
a summary of various tools that support agile software development in the cloud.

10.2 Agile, Cloud and Collaboration

 Agile development involves bringing stakeholders from across the entire life cycle
together—from business analysts to developers to QA managers to IT operations
personnel—more frequently and collaboratively than ever before. Agile requires
high-velocity feedback from these stakeholders throughout the process, which the
cloud enables with ease.

 Geographical distance affects the ability of teams to collaborate [2]. Moreover, it
has been found that as the distance between two working locations increases, com-
munication and collaboration decline [3]. Also, physical distance removes the
opportunity for face-to-face communication.

 Practitioners and researchers in information technology are of the opinion that
cloud is important not just for the technologists but also for businesses as it provides

S. Karunakaran

215

an opportunity for improving and accelerating collaboration. Collaboration within
teams and across stakeholders including the business is particularly relevant for
 successful adoption of agile practices (see Fig. 10.1).

 Project management and project collaboration tools have been one of the earliest
tools to be available as Software as a Service (SaaS) within the domains of cloud
computing. This can be attributed to the pervasive nature of the Internet which has
enabled subscription-based IT. The Internet offered IT services as utility at much
lower prices. However, the biggest advantage that SaaS in the cloud offers is that it
takes care of owning most of the hardware and the software resources required.

 As the project progresses, agile teams can expand or contract in size within and
across multiple geographical locations. This calls for quick scalability in terms of
collaboration and project management software. With SaaS-based project manage-
ment and collaboration, scalability becomes easier with a few clicks of a button,
without heavy investments in software and hardware. The transition is smoother
because of the subscription-based collaborative IT services.

 Table 10.1 summarises the collaboration challenges faced by agile teams and
mitigation options provided by cloud adoption [16].

 Cloud collaboration has been rapidly evolving. In the past, cloud collaboration
tools have been primitive with basic and limited features. Recent solutions have a
document-centric approach to collaboration. Even more sophisticated tools allow
users to “tag” specifi c areas of a document for comments which are delivered real
time to those viewing the document. In some tools, the collaboration software can
be integrated into other tools like Microsoft Offi ce, SharePoint and Adobe
Photoshop. Using a single software tool to suit all the collaboration needs of an

 Fig. 10.1 Agile, cloud and collaboration

10 Impact of Cloud Adoption on Agile Software Development

216

agile team could be a good option rather than having to liaise with multiple different
tools and techniques.

 SaaS-based models have features that enhance collaboration and project man-
agement. They include:

• Managing multiple projects

 – Dashboard
 – Ticket management
 – Access controls for each project

• Online document management

 – History/version control
 – Backup

• Time tracking of the team

 – Task-level tracking

 Table 10.1 Mitigation options provided by cloud for collaboration challenges faced by agile
teams

 Collaboration challenges Impact on agile team Facilitating by using cloud

 Geographically distributed
team

 The physical distance can cause
communication gaps and
project delays due to
difference in time zones and
frequent handoffs (during
the start and end of day at
every geographical location)

 Dynamic binding, runtime
adaptation and timely
availability of required services
could help deal with issues
arising with geographically
dispersed teams

 Lack of trust/
understanding due to
cultural differences

 Unequal distribution of work
and poor skill set
management

 Services could maintain a fair
distribution of work between
the teams. Only a specifi c
person will be responsible for
the task assigned to him or her;
thus, skill management would
be easier too

 Logistics-related issues Unequal levels of quality
across software
development sites, direct
access in one location
versus a poor VPN access
in other location

 Availability of SaaS could
diminish installation overheads
at each development location

 Time-based issues Ineffective project
management, lack of
visibility into project
progress, diffi culty in
project confi guration
management

 The cloud service models imply that
the data resides on a centralised
location where inventory of
services is maintained. Services
maintain a registry where all of
them are stored. This attribute
could be used to store and
retrieve confi gurations

S. Karunakaran

217

• Ensuring proper allocation of resources
• Generating reports

 – Predefi ned templates
 – Custom templates

 The ubiquity of cloud computing services is another key advantage for distrib-
uted teams. In a hot site, the provider typically gives only a few sites needing dedi-
cated network connectivity; however, in a cloud-enabled hot site, the provider can
offer access to multiple sites effortlessly across the Internet [4]. This benefi t can
also make fl exible workspace arrangements possible. Team members can work
from an alternate work location. They could access the resources on the cloud via a
web browser and thereby eliminate the need to have the required connectivity setup
at the alternate work location [5].

 Aligning with the agile manifesto , agile project management encourages involve-
ment of software development teams in iterative and collaborative requirements
gathering process. This process is embraced by utilising hosted collaboration tools,
particularly in case of a distributed team. For example, let us examine a cloud-based
collaboration tool: BootstrapToday (see Fig. 10.2). The features include fi le sharing,
fi le organising, walls for companywide announcements and sharing ideas, project
wiki to create and manage project knowledge base for each project, email integration,
notifi cations and activity streams.

 Fig. 10.2 Screenshot of the tool BootstrapToday (digitizor.com)

10 Impact of Cloud Adoption on Agile Software Development

218

 Agile manifesto also emphasises face-to-face collaboration. In a distributed
team, the only way to make this happen on a daily basis is to make use of videocon-
ferencing (VC). Few distributed agile teams have started leveraging videoconfer-
encing to improve their collaboration. However, they would have gone through
many hiccups to procure, set up and use VC systems. In most cases, it is a shared
asset and teams may not be able to get access to VC on demand. Traditional VC
systems also require upfront capital investment in equipment, particularly if the
system is expected to scale. In addition to this constraint, VC units are also required
at each user location. A dedicated, secure network with a huge bandwidth is
required to have good-quality calls. This has made many small- to medium-sized
businesses to postpone their investments in VC. There have been instances where
teams have abandoned VC usage due to frequent glitches. A cloud-based VC service
eliminates costs involved in possessing the technology required for VC sessions
and can aid in setting up and managing calls. In addition, it can provide the much
needed reliability. Certain providers also offer transcoding services which make the
usage agnostic of the videoconferencing protocol being used and improve the
interoperability .

10.3 Setting Up Infrastructure

 Agile methods require infrastructure to be in place before development starts since
poor infrastructure and infrastructure that is time consuming to set up can signifi -
cantly impede development teams, particularly the ones that are ready to deploy
production quality incremental products every iteration.

 In case of a cloud setup, infrastructure is readily available. Maintenance routines
and updates of servers hosted on the cloud are taken care by the cloud vendor. Agile
projects can save considerable time and effort spent on setting up the environment
through this mechanism.

 Generally, at the start of any project, signifi cant time and effort are spent on
acquiring hardware and licences of software for development environments, testing,
project management, source code management and collaboration. In addition to the
huge man-hours required, this initial setup activity would also entail signifi cant
capital expenditure of the overall project budget. Adopting a cloud’s subscribe-and-
use model, where capital is incurred only for the amount of service utilised, can help
projects to minimise huge upfront capital investment. It also saves man-hours
required for the setup stages. These savings in time can be benefi cial for agile proj-
ects since business owners will start receiving faster deliveries.

 During the course of the project, infrastructure also involves maintenance over-
heads, say, installing and handling software patches, taking backups and hardware
upgrades. Most cloud providers do not provide direct access to infrastructure; how-
ever, they provide permissions and ownership of a prefabricated hardware and soft-
ware infrastructure. This provides the much needed consistency for an agile team to
deploy and run an application directly without incurring maintenance overheads.

S. Karunakaran

219

 The top most level of confi guration option available in cloud is infrastructure .
Most cloud service providers offer many infrastructural services including message
queues, static content hosting, virtual machine hosting, streaming video hosting,
storage and load balancing.

10.4 Distributed Development

 In a global software development team, a team member from across the geographi-
cally distributed agile team should be able to perform typical software development
activities like coding, testing, deployment and release to production without any
diffi culties during their respective working hours (in their time zones). However,
distributed software development approaches have several concerns like cultural
differences, collaboration and communication mechanisms, which can destabilise
the overall development success if not handled effi ciently [6]. Distributed work
items appear to take about two and a half times as long to complete as compared to
similar items in a colocated work environment [7]. Cloud enables centralised host-
ing of tools for agile project management, continuous integration, test dashboard,
testing environment and all other software and hardware instances needed for a typi-
cal development team. Because of these features, software development teams
would be comfortable developing their software using cloud-based development
platforms that allow their teams to collaborate and manage various project artefacts
like product backlogs and user stories, burn-down charts, task lists, bug informa-
tion, documentation and release notes irrespective of where they are located.

 The Platform as a Service representation can provide a development platform
with set of services to assist application development and hosting on the cloud. It
does not require any kind of software downloads and installations [8] and, because
of its characteristics, has the capacity to support geographically distributed teams.

 Software development teams can benefi t by rapidly provisioning SCM reposito-
ries in the cloud in minutes with secure, 99.9 % or better uptime SLAs [9]. In addi-
tion to being available at all times, development platforms on cloud can also scale
on demand from a workgroup to the entire enterprise providing services across sev-
eral sites and projects.

10.4.1 Setting Up Environments

 Services in the cloud support establishment of different virtual environments. The
most common use of the cloud includes the setting up of an environment consisting
of several virtual servers. These virtual servers can then be used for development
and testing. Certain types of cloud services are also beginning to support modern,
multitier application architectures. When the development in a virtual cloud envi-
ronment is completed, the images of virtual servers can be moved to the production

10 Impact of Cloud Adoption on Agile Software Development

220

environment. The production environment can also be set up in the cloud; in this
case, only the images have to be moved to another virtual environment marked for
production [10].

10.4.2 Continuous Integration

 In addition to development, agile teams will want to exploit virtualisation to
provision for build images in the cloud, automate SCM-to-build links and provide
frequent feedback to stakeholders on the health of code from their continuous inte-
gration servers.

 Continuous integration (which involves frequent integration of new code/changes
into the code repository) was fi rst proposed as part of extreme programming.
Continuous integration is one of the diffi cult tasks that can be implemented on the
cloud. This is obvious due to the fact that constant building and testing place enor-
mous demands on hardware. However, many widely used continuous integration
tools are now cloud ready. For example, Hudson (Jenkins), one of the popular con-
tinuous integration tools, has options for confi guration which can be used to effec-
tively manage dynamic demands by spinning slaves up and down on demand. As a
result, setting up Hudson in the cloud might be more effi cient to meet impulsive
demands instead of running a huge swarm of servers.

 The cloud enhancement on Hudson enables it to work with cloud services and
virtualisation technologies so that development teams can improve resource utilisa-
tion, reduce maintenance overhead and handle spiky system loads. Hudson cannot
only start as many nodes as needed but also turn them off when they are unnecessary
[11]. By means of programmable APIs, Hudson can also talk to Amazon’s EC2 (see
Fig. 10.3). Hudson’s EC2 plug-in runs on top of a Java client library, Typica, for a
variety of Amazon Web Services. Typica takes care of automatically provisioning
slaves on EC2 on demand and also shutting down unused instances.

10.4.3 Software Testing

 Testing is another key activity in any software project. In case of a project that uses
agile, testing is not carried out as a separate phase in the project life cycle. Testing
is predominantly impulsive in nature. Developers and testers will continually want
resources for multiplatform testing, unit and functional testing and in parallel exe-
cute effective load testing. Hence, testing is another key activity that can greatly
benefi t from cloud migration, as they tend to use the cloud assets in spikes and have
fl uctuating demands over a period.

 Even if cloud is not used for the production infrastructure , it can still be an
exceptionally useful tool for accelerated software delivery process. Figure 10.4
shows a sample setup for acceptance testing in the cloud. Cloud makes it simpler to

S. Karunakaran

221

 Fig. 10.3 Amazon EC2 create instance—Jenkins GUI

 Fig. 10.4 A sample setup for acceptance testing using cloud

10 Impact of Cloud Adoption on Agile Software Development

222

set up new testing environments on demand. Testers could run lengthy tests such as
capacity tests and multiplatform tests in parallel and reduce the testing time signifi -
cantly. This is important especially for Scrum teams that are running on 1–2 week
sprints (iterations).

 Agile teams follow a test-driven development approach. This approach demands
continuous testing and integration of the application throughout the iteration. Using
an environment, say, like Azure for testing makes it possible to edit code and make
incremental deployments for testing. All that a product owner or tester would
require is a URL of the cloud environment through which they can access the appli-
cation for testing [12].

10.4.4 Project Management

 Project management in cloud can allow agile teams to create and manage their
releases, sprints, backlogs, burn-down charts, etc., on the cloud. Agile development
is maturing, and many organisations are completely transforming to agile. This calls
for enterprise-level management tools. There are many application life cycle man-
agement (ALM) tools in the market which provide this capability. These tools pro-
vide an end-to-end solution for all the needs of enterprise-wide agile adoption.

 For example, CollabNet’s ScrumWorks Pro provides fl exible, hosted cloud envi-
ronment, which is well integrated with popular source code and deployment tools.
This enhances the advantages of Agile for faster development and delivery of soft-
ware. Figure 10.5 provides an overview of CollabNet’s TeamForge (an Agile ALM)
and CloudForge (a wrapper to provide the cloud services which is enriched with
major cloud vendors). In addition, it supports instant-on hosting for Subversion,
with an open architecture and partner ecosystem that enables workgroups to boot-
strap immediately with a basic code hosting setup. This also provides a seamless
path to scalable agile software development for the enterprise . Microsoft’s Team
Foundation Server is another ALM tool that has the potential to exploit cloud offer-
ings and is coupled with Microsoft Azure platform.

 Agile teams can also benefi t from custom-made business applications called
CloudApps which are an extension to cloud computing. For example, Folio Cloud
which is the European business cloud offers the CloudApp SCRUM (see Fig. 10.6).
Using this app, teams can organise their sprint cycles, generate burn downs, track
their velocity and manage their product backlog and defects. In addition, it has fea-
tures for collaboration and managing documentation [13].

 To quickly access these services on demand and in an agile way, application
developers will be looking for automated provisioning capabilities, such as “one-
click” application selection, provisioning and e-commerce billing solutions as part
of their application development platforms.

 Figure 10.7 and Table 10.2 summarise the above discussions. Figure 10.7 provides
suggestions on the type of activities to move to cloud, and Table 10.2 provides a list
of considerations to make before migrating to cloud.

S. Karunakaran

223

 F
ig

. 1
0.

5
 C

ol
la

bN
et

 c
lo

ud
 p

la
tf

or
m

—
Te

am
Fo

rg
e

an
d

C
lo

ud
Fo

rg
e

[1
4]

10 Impact of Cloud Adoption on Agile Software Development

224

10.5 Deployment Considerations

 Platforms offered by most cloud service providers have APIs for automating the
application deployment process across various project borders. This eliminates
some of the lengthy steps involved in deployment process which is critical for agile
projects since the sprint length is short and fi xed.

 The capability that is most sought after in recent times on cloud-based development
platform is the ability to support production deployment. Agile teams need to set up
environments quickly, automate deployment into the live environment, schedule
their jobs between private and public clouds and execute on fl exible cloud platforms.

 Fig. 10.6 SCRUM CloudApp (foliocloud.com)

 Fig. 10.7 Key software
development activities—
on-premise versus cloud

S. Karunakaran

225

There will be a growing need for cloud analytics and management capabilities that
provide visibility to development organisations as well as ability to quickly address
changes typically triggered by trouble tickets and new software releases and to address
the challenges of releasing new services and applications into production.

 Agile software development has been in the industry for more than a decade, and
agile development in the cloud is becoming a norm. Iterative and incremental devel-
opment is now being applied for deployment too and popularly being known as
DevOps . This is an agile operations concept that uses agile techniques to link up
departments—Development (Dev) and Operations (Ops)—together, which traditionally
operated in silos. Figure 10.8 summarises the DevOps concept.

 Table 10.2 Considerations
for application assessment
parameters

 Characteristics Parameters

 Application type Business applications
 Consumer applications
 Enterprise applications

 Build type COTS
 Custom

 Functional Domain
 Criticality
 Location
 Customer facing

 Data Data privacy
 Data volume

 Non-functional characteristics Availability
 Latency
 Security
 Scalability

 Elastic requirements Network
 Compute
 Storage

 Fig. 10.8 DevOps as the
intersection of development,
technology operations and
quality assurance

10 Impact of Cloud Adoption on Agile Software Development

226

 The foundation of DevOps is established on the premise that all aspects of
technology infrastructure can be managed through code. This may not be entirely
possible without cloud. Repeatability is crucial for the success of DevOps. Once a
setup is made available on the cloud, every task on that setup becomes repeatable.
For example, starting a server becomes a repeatable testable process [15]. Scalability
is another aspect of DevOps in the cloud, as it dramatically improves the server to
admin ratio. Setting up a server is usually maintained as a set of lengthy procedures
that are poorly documented and often demand manual intervention. However, with
DevOps cloud combo, these steps are written down as a piece of software. This
improves speed of setting up a server and at the same time reduces the need for
manual intervention and thereby consequent errors. DevOps in the cloud also
enables self-restoration; i.e. failures can be automatically detected, and backup
systems can be brought to forefront seamlessly.

10.6 Cost and Time Implications of Agile in the Cloud

 Pressures faced by businesses are increasing day by day; this in turn puts tremendous
pressure on software development projects both in terms of time and cost. We have
discussed earlier in this chapter that adopting cloud helps distribute the costs over a
period into future, as the companies do not have to incur huge initial costs for pro-
visioning hardware and procuring the software. The subscribe-and-use model
allows for instantaneous access to the necessary resources, and the pay-as-you-go
model with the service provider is a utility-based pricing scheme that allows to pay
only for the resources consumed.

 As discussed in the various sections throughout this chapter, collaboration and
management tools in the cloud result in lesser economic investment. Overheads and
operating costs are signifi cantly reduced without compromise on instant availability
of service which helps businesses to realise faster and higher return on investments.
Table 10.3 provides a comparison of the nature of costs incurred due to various factors
that impact agile development before and after cloud adoption.

10.6.1 The Case of Start-Ups and SMEs

 Agile project management in the cloud can benefi t small- and medium-sized enter-
prises (SMEs) and start-ups which are typically cash starved. The key enabling
benefi ts are:

• Almost zero software installations and hardware setups
• Reduced time to market
• Access to extendable team of providers, partners and employees
• Avoid maintenance of server racks (needs skilled manpower and space)
• Offer fl exible work from home options to their team members
• Save on overheads further by reducing the usage of the offi ce space

S. Karunakaran

227

10.7 Challenges Using Cloud for Agile Software Development

 The various benefi ts that cloud can offer to embrace agile software development
were discussed in the previous sections. However, teams need to understand the
challenges in adopting cloud. The challenges need to be weighed against the poten-
tial benefi ts before migrating to cloud. This section discusses the various challenges
that need to be considered.

 A system may be implemented with a wide range of services and applications.
For example, static content could be on Google App Engine, and the streaming
content could be on AWS. To make these possible, applications need to be specifi -
cally designed to work in such heterogeneous environments.

 Each cloud vendor offers a different set of services. Choosing the right vendor is
crucial since there is signifi cant lock-in once a vendor has been chosen. Unlike other
traditional development methodologies like waterfall , agile teams will not be able to
re-evaluate a vendor and change the cloud provider during the course of the itera-
tions. This can prove to be costly in terms of time. Outages could be another chal-
lenge. Although this is true even for self-owned data centres, the team has very little
control and knowledge in the event of an outage in this case.

 Compliance could be another constraint when using cloud computing. However,
regulations and compliance bodies do not completely hinder the use of cloud com-
puting. The implications for cloud computing while complying with the regulations

 Table 10.3 Nature of costs before and after cloud adoption

 Factors impacting agile
development

 Traditional
costs Nature of costs with cloud adoption

 Admin and maintenance
people for handling in
house infrastructure

 High Negligible, since most infrastructures are moved
to cloud and managed by the cloud provider

 Development effort High Low, SaaS-based licences used for various
development software like IDEs, management
and collaboration software

 On-demand team ramp
up/ramp down

 High Low, elasticity is one of the biggest advantages of
cloud; payment is only for the services utilised

 Demo Moderate Low, setting up demo environments can be done
on a virtualised instance

 Deployment High Low
 Creating and managing

test environments
 High Low

 Creating and managing
production
environments

 High Low

 Prototyping and continuous
feedback

 High Low, risk associated with failure of prototypes
would be minimal as compared to on-premise
deployment wherein considerable investments
have to be made on setting up the infrastructure
and making the prototypes accessible

10 Impact of Cloud Adoption on Agile Software Development

228

should be understood. It is possible to reconcile through both careful planning and
risk management. For example, in order to remain HIPAA compliant, one of the
projects encrypted its data so that it can be hosted on a cloud platform.

 As far as security and performance are considered, service levels are particularly
important when the entire or most parts of the infrastructure are outsourced to a
cloud provider.

 At this moment, there is no common standard used by utility computing services.
Depending on the type of product and application being built, the economic aspects
need to be worked out. The costs and savings of moving to cloud versus owning the
infrastructure need to be carefully weighed.

 There are different cloud-based tools that allow us to work together, but these tools
may need a tool of their own to work together better. It is a fact that teams struggle to
manage the multiple communication streams they are connected to. For example,
300 mg is a tool that pulls all the business information from various cloud services
together in one place; Hojoki lets all of a customer’s CloudApps work as one.

10.8 Case Study of an Agile Project That Adopted Cloud

 This case study is about a software solution to a telecom service provider (TSP).
TSP had solutions and products which could be offered by the parent business or
any of its partners. The solutions and products were offered across diverse geo-
graphical locations, and the partners offering the solutions were scattered across the
world. The key issues and the core requirements of the project are listed below:

• Each of the partners wanted a portal from which the solutions and products could
be offered.

• Existing customers of the partner wanted a mechanism to manage their products.
• Develop the ability to set up new partner portals in minimum time duration taking

into account the customisation needs of the new partner.
• Provide integration with interfaces for ease of management and provisioning of

products and solution packages.

 These problem areas were impacting the business already. As more partners
were being added across the geographies, partner portals needed to be designed and
deployed. Infrastructure costs and development efforts were beginning to increase.
The effort required in order to come up with a single partner portal was around 12
person months on an average. This directly correlated to an increased turnaround
time before a partner could start offering the products and solutions.

 These challenges would be true in any business which offers products and
solution packages through a network of partners based in different locations. In
addition to the above challenges, the development team was distributed and spread
across the USA, India and China. Collaboration was diffi cult to achieve, and lack
of suffi cient collaboration could lead to integration problems and delay the project
signifi cantly.

S. Karunakaran

229

 The solution approach which was proposed to cater to the problem areas men-
tioned above involved:

• Development of a portal framework which could address the customisation
needs of the partner and support an XML template-based GUI customisation and
has the ability to integrate with the exposed product and solution interfaces.

• The portal framework would be hosted on a cloud platform like Amazon EC2 or
Microsoft Azure.

 The high-level architecture diagram for the solution is given in Fig. 10.9 . The
solution provided key administrator roles—super admin, partner admin and cus-
tomer admin. The super admin could create instances of the portal for the different
partners. The entire portal framework was hosted inside a cloud environment.

 Hosting the portal inside a cloud platform provided the following benefi ts:

• Better scalability —scaling of the portal instance depending on the load of incom-
ing traffi c on the partner portal instance.

• Complete control of instances—instance management is provided through a
single interface.

• Elastic load balancing —automatically distributes incoming application traffi c
across multiple instances. It enables greater fault tolerance.

• Multitenancy —the cloud platform provided inbuilt multitenancy, thus providing
partner instances.

• The framework had support for XML-based template customisation and also
provided localisation support.

• Reduction in infrastructure cost—leveraging a cloud platform resulted in drastic
infrastructure cost reduction (close to 25 %).

• Reusable and customisable framework.
• Effi cient load balancing and instance management.

 In addition, the project management tool, source code repositories and continu-
ous integration servers were maintained on the cloud. The team also practised test-
driven development (TDD). Cloud enabled TDD by making it possible to edit code
and make incremental deployments for testing. Table 10.4 lists the benefi ts that the
team got through continuous integration and TDD. The teams across the geogra-
phies collaborated on a daily basis via a cloud-enabled videoconferencing system
(see Fig. 10.10). Frequent demos and reviews were set up throughout the iteration.
Adoption of cloud made it possible to set up in progress working software for demo
purposes within short setup times.

10.9 Tools for Agile Software Development in the Cloud

 Throughout this chapter, different activities and tools were discussed. Table 10.5
provides a snapshot of various tools and the activities they support along with few
examples. Some of the tools in this space in the industry as well as the ones listed in

10 Impact of Cloud Adoption on Agile Software Development

230

S
up

er
 A

dm
in

P
re

se
n

ta
ti

o
n

 L
ay

er

P
ar

tn
er

 A
dm

in

In
te

rn
et

F
ire
w
al
l

U
se

r(
s)

A
pp

lic
at

io
n

F
ac

ad
e

C
us

t
M

gm
t

L O G G E R

S E C U R I T Y

U
se

r
M

gm
t

P
ar

tn
er

C
us

to
m

er

C
R

M
 S

ys
te

m

E
xt

er
n

al
 S

ys
te

m

P
ar

tn
er

 B
ac

k
E

n
d

C
M

D
B

 S
er

vi
ce

D
at

ab
as

e

S
E

N
 B

ac
ke

n
d

/P
o

rt
al

P
ro

vi
si

on
in

g
E

ng
in

e

S
E

B
A

Q
oS

M
gm

t
R

ep
or

tin
g

B
ra

nd
in

g

C
M

D
B

 A
da

pt
er

U
til

iti
es

/H
el

pe
r

D
at

ab
as

e
C

om
po

ne
nt

D
at

a
L

ay
er

S
er

vi
ce

 L
ay

er

B
u

si
n

es
s

L
ay

er

P
ro

vi
si

on
in

g
C

R
M

 A
da

pt
er

P
or

ta
l D

at
ab

as
e

Cl
ou

C
on

fig
 F

ile
(s

)

P
or

ta
l

C
on

fig
ur

at
io

n

 F
ig

. 1
0.

9
 H

ig
h-

le
ve

l a
rc

hi
te

ct
ur

e
di

ag
ra

m

S. Karunakaran

231

 Table 10.4 Effects of continuous integration and test-driven development before and after cloud
adoption

 Continuous integration
 Before After
 A dedicated build engineer takes care of the build The entire process is automated by

means of continuous integration
tool

 In addition to the actual build time, the build engineer is
involved in cleaning up previous builds, restoring last
known good build in case of failures, debugging and
deploying builds

 Productivity improvement: 7 h/day

 Build time: approx. 2 h 40 min Build time: 30 min
 Build frequency: once per day Build frequency: 4 times per day
 Test-driven development
 Before After
 Manual unit tests were written and maintained

on a spreadsheet
 Test cases were written using an

xUnit framework
 Code coverage ratio: <0.20 Code coverage ratio: 0.84
 (Could not be measured precisely; the number was

derived based on input from the team)
 (This metric was calculated precisely

using the code coverage tool
Cobertura)

 No. of unit test cases: 176 No. of unit test cases: 3,552
 No. of defects: 13 (in user acceptance testing),

4 (postproduction)
 No. of defects: 4 (in user acceptance

testing), 0 (postproduction)

 Fig. 10.10 Collaboration through videoconferencing setup hosted on cloud

10 Impact of Cloud Adoption on Agile Software Development

232

the example column in Table 10.4 also have ALM capabilities. For businesses that
practise enterprise-scale agile, using an ALM tool may be a good option as the inte-
gration issues are almost invisible.

10.10 Conclusion

 Combining agile development together with the capabilities of cloud computing
dramatically accelerates the pace of business development. Agile methods empha-
sise on involving the end users in the software development process. Each require-
ment is built exactly the way the user wants it. As development progresses, the
project moves in an incremental manner with a strong feedback loop that repriori-
tises the work based on the real-time business needs. Agile software development

 Table 10.5 List of tools for agile development in the cloud

 Tool categories Purpose Example

 Project management An integrated suite for web-based
project management—sprint
planning, generating reports,
tracking estimates and task
breakdowns

 Atlassian-GreenHopper,
CollabNet-TeamForge

 Collaboration Collaboration through wikis, online
discussion forums, instant chat
and document management

 Basecamp, Microsoft
SharePoint

 Continuous integration Automated continuous builds through
continuous integration

 Jenkins, TeamCity

 Test automation Automated regression, performance
and load tests

 Selenium Grid, HP
LoadRunner

 Defect management Tracking and managing defect
category, status, description, steps
to reproduce, etc.

 Bugzilla, Atlassian-JIRA

 Requirements management Managing product backlog—epics
and user stories

 Microsoft Team
Foundation Server,
Pivotal Tracker

 Source code management Committing coding, version control,
branching, change management

 Subversion, Git

 Integrated development
environment (IDE)

 Writing code, debugging and unit
testing

 Eclipse, Visual Studio

 Videoconferencing Face-to-face discussion among
geographically distributed
members

 IVCi, Nefsis

 DevOps IT operations management for
continuous delivery

 Puppet, Chef

 Virtual Private Cloud
Management

 Physical and virtual machines that can
be adaptably used by project teams

 enStratus, CUBiT

S. Karunakaran

233

powered by cloud gives superior control over the process, helps realise faster ROI,
strengthens the fi rm’s competitive edge and above all enables preservation of agility
as defi ned by the agile manifesto.

 Agile methods are continuously evolving; agile teams have broken the barriers to
communication and have taken agile development from small pockets to global
software development. The number and size of distributed teams that collaborate
and embrace agile across time zones and geographies are increasing. These teams
have begun exploiting the capabilities of cloud computing. Due to the advent of
cloud, agile practices which were applied to development and testing are now being
applied for IT operations.

 A software development team that is planning to adopt cloud can identify differ-
ent types and spheres of issues faced by the team in case of global software develop-
ment and investigate the potential of the cloud to address those issues. Evaluation of
service model is crucial to determining the service providers. The integration
requirements with current on-premise systems need to be considered. Classifi cation
of the applications based on security and confi dentiality could be a useful step
before migration. Frequent and preferably automated review of service-level agree-
ments and performance requirements is important to ensure there is no degradation
in service. Teams should also be aware of the additional collaboration and coordina-
tion efforts requirement with the cloud service provider. In addition, project manag-
ers need to understand the contractual implications that have been established with
the cloud vendors.

 Cloud can simplify software development as a product as well as a process. The
process could have implications for the software development business model in
which service providers are organisations and services are parts of a global software
development process.

 In summary, agile and cloud together make a valuable combination as it can aid
software teams to produce useful functionality that can be taken to the customers
instantaneously, collate feedback and make quick changes based on that feedback.
Software development teams will need to make use of the potential that agile and
cloud together offer and provide better software products.

 References

 1. Ahead in the cloud: CSC Cloud Usage Index Report, BusinessWire (2011)
 2. Herbsleb, J.D.: Global software engineering: the future of socio technical coordination.

In: Proceedings of the Future of Software Engineering (FOSE’07), pp. 188–198. IEEE,
Washington, DC (2007)

 3. Allen, T.J.: Managing the Flow of Technology. MIT Press, Cambridge, MA (1977)
 4. Linthicum, D.: Leveraging cloud computing for business continuity. Disaster Recovery J.

 23 (3), 28–30 (2010)
 5. Halpert, B.: Auditing Cloud Computing – A Security and Privacy Guide. Wiley, Hoboken

(2011)
 6. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in globally

distributed software development. IEEE Trans. Softw. Eng. 29 (6), 481–494 (2003)

10 Impact of Cloud Adoption on Agile Software Development

234

 7. Ciccozzi, F., Crnković, I.: Performing a project in a distributed software development course:
lessons learned. In: Proceedings of the 5th IEEE International Conference on Global Software
Engineering (ICGSE), pp. 187–191, 23–26 Aug 2010. IEEE, Princeton (2010)

 8. Grinter, R.E., Herbsleb, J.D., Perry, D.E.: The geography of coordination: dealing with distance
in R&D work. In: Proceedings of the International ACM SIGGROUP Conference on
Supporting Group Work (GROUP ’99), pp. 306–315. ACM Press, New York (1999)

 9. Ensell, J.: Agile development in the cloud. Agile J. http://www.agilejournal.com/articles/
columns/column-articles/6018-agile-development-in-the-cloud (2011). Last Accessed May 2012

 10. Zrnec, A.: Software engineering in the cloud for reducing the application time-to-market.
Elektroteh. Vestn. Electrotechnical Society of Slovenia, Ljubljana, Slovenia 78 (3), 123–127
(2011)

 11. Kawaguchi, K.: Continuous integration in the cloud with Hudson (TS-5301). In: Proceedings
of the JavaOne Conference (2009).

 12. Dumbre, A., Ghag, S.S., Senthil, S.P.: Practising Agile Software Development on the Windows
Azure platform, Infosys Whitepaper (2011)

 13. Folio Cloud: www.foliocloud.com (2012). Last Accessed May 2012
 14. Collabnet TeamForge: www.collab.net (2012). Last Accessed May 2012
 15. Reese, G.: DevOps in the cloud explained. http://devops.com (2011). Last Accessed May 2012
 16. Hashmi, S.I., Clerc, V., Razavian, M., Manteli, C., Tamburri, D.A., Lago, P., Nitto, E.D.,

Richardson, I.: Using the cloud to facilitate global software development challenges.
In: Proceedings of the Global Software Engineering Workshop 2011 (ICGSEW). IEEE,
Helsinki, Finland (2011)

S. Karunakaran

http://www.agilejournal.com/articles/columns/column-articles/6018-agile-development-in-the-cloud
http://www.agilejournal.com/articles/columns/column-articles/6018-agile-development-in-the-cloud
http://www.foliocloud.com/
http://www.collab.net/
http://devops.com/

235Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_11, © Springer-Verlag London 2013

 Abstract With the advent of Internet, information has crossed the realms of books
and gone digital, requiring data to be easily accessible and delivered anywhere
speedily. There are myriads of formats in which data is currently available, such as
videos, images, documents and Web pages. Accordingly, handling datasets in vari-
ous formats has made the task of designing scalable and reliable application really
challenging. Building the applications of tomorrow would need architects and devel-
opers to construct applications that can meet the needs that would demand handling
high volumes of data and deliver substantial throughput. In today’s enterprises, there
are legacy applications which may have been developed several years or even decades
ago. At the time, the business may have been in its infancy, and so applications may
have been designed to satisfactorily handle workloads prevalent in those times with
some average growth factors built in. However, owing to the new emerging trends in
the technology space, such as mobile and big data, the workloads at which businesses
operate today have grown manifold. Also, the monolithic legacy systems serving
those workloads have failed to keep pace, often struggling to deliver the SLAs
(Service-Level Agreement). Although cloud is not a panacea for all kind of new
demands, we believe that with some appropriate architectural restructuring, existing
applications may go a long way in serving the demands of new growing businesses.
Applications redesigned on the lines of parallel computing patterns such as master/
worker or MapReduce and implemented on cloud platforms can be leveraged to add
new life or re-energise legacy applications that can scale much better. In this chapter,
we discuss an approach to transform legacy applications, designed to handle high-
volume requests, by using re-engineering techniques and modern design patterns so
as to effectively realise the benefi ts of cloud environment.

 Chapter 11
 Technical Strategies and Architectural Patterns
for Migrating Legacy Systems to the Cloud

 Sidharth Subhash Ghag and Rahul Bandopadhyaya

 S.S. Ghag (*)
 Infosys Labs , Infosys Limited , Pune , India
 e-mail: sidharth_ghag@infosys.com

 R. Bandopadhyaya
 Infosys Labs, Infosys Limited , Bangalore , India
 e-mail: rahul_bandopadhyaya@infosys.com

236

 Keywords Application migration • Distributed application • Parallel processing •
 SOA • Cloud engineering • Windows azure • Azure • Model-driven architecture

11.1 Introduction

 Service-oriented architecture (SOA) is a key architectural concept in the fi eld of
service computing. SOA design principles are used as guidance to develop service-
oriented applications [1]. A service forms the basic construct of SOA which enables
rapid creation, ease of publication and seamless assimilation for developing distrib-
uted applications across a heterogeneous system environment. The World Wide
Web Consortium (W3C) defi nes SOA as “ A set of components which can be invoked ,
 and whose interface descriptions can be published and discovered ” [2]. As per a
Microsoft article, SOA can be simply defi ned as “ A loosely - coupled architecture
designed to meet the business needs of the organization ” [3]. In short, SOA aids to
deliver agility . Globally, enterprise IT is adapting to SOA in order to bring in effi -
ciencies and responsiveness within the internal as well external processes and sys-
tems. Agile IT systems help businesses tackle and exploit change by delivering
faster, better and cheaper services.

 For enterprises to truly benefi t from SOA, best-in-class SOA practices have to be
established. Service-oriented principle applied to service design improves service
reusability and infuses desirable characters such as agility, interoperability and fl ex-
ibility [4]. However, applying service-oriented principles come with their own set of
design challenges [5]; e.g.:

• Existing SOA frameworks do not guide developers towards proper application of
these principles and thus cannot help in establishing best practices in service-
oriented design.

• SOA principles are violated by binding services tightly to specifi c technologies
and middleware, which lock systems into the specifi c product.

 The application being discussed in this chapter, “service modelling workbench”,
has been developed to effectively address the challenges highlighted.

 In the rest of the chapter, we begin by providing a background and discuss the
AS-IS architecture along with challenges faced by the application to meet the grow-
ing demands of SOA in Sects. 11.2 and 11.3 . Then, in Sect. 11.4 , we discuss the
overall technical adoption strategy, identify a suitable design pattern and propose a
cloud-driven future-state solution architecture with a detailed view into the different
components developed to address the challenges highlighted. Further, in Sect. 11.5 ,
we identify the Windows Azure cloud service components which have been utilised
to develop the target application. Section 11.6 lists the benefi ts gained from this new
proposed cloud-based architecture. We also share best practices which have been
compiled from our learnings and experiences in this process in Sect. 11.7 . A brief
summary is provided in Sect. 11.8 .

S.S. Ghag and R. Bandopadhyaya

237

11.2 Background

 “Service modelling workbench” is a service modelling tool which provides its users
(architects, analysts and developers) a design environment to model and build
service- oriented applications in a standards - oriented approach. The tool is used to
enhance service engineering life cycle by providing best practices and guidances
around service design and development practices. It presents a workbench environ-
ment to design, develop and deploy services on the lines of SOA. Using this applica-
tion, a user is able to model service-oriented defi nitions and implementations
without having to touch a single line of source code. This is possible as the applica-
tion, based on predefi ned templates and confi gurations specifi ed by the user, auto-
mates the low-level code generation of the entire architecture stack of a typical
service-oriented application as depicted in Fig. 11.1 .

 The process of realising the services is driven by the design specifi cations defi ned
in the model and is implemented using a template-based code generation process .
This approach requires a lot of code churning to generate low-level code from the
high-level models. Based on the complexity of the business functionality and as
demands of service orientation begin to grow in enterprises, so did the need to pro-
cess high volume of requests. The services modelled could range anywhere from
one to thousands of services, and, hence, it was required for the application as well
as the infrastructure to scale and handle the load variations in a consistent and time-
bound manner. In some of our deployments, when demands to process requests
began to increase rapidly, we observed that the application took 3–4 h to generate
around 300–400 services. Also, the processing time would rise linearly as the num-
ber of services expanded. This high processing time and the inability of the applica-
tion to scale were unacceptable. The scalability of the application was limited due
the monolithic nature of the existing architecture and also the infrastructure it ran
on. More details on the state of the earlier architecture and its challenges are
explained in the next section (Fig. 11.2).

11.3 AS-IS Architecture

 The traditional architecture of the legacy service modelling application consisted of
a monolithic stand-alone desktop client running within a single app domain [6].
This design constrains the application to execute in one single process with limited
ability to scale . Similar patterns have been signifi cantly observed with legacy appli-
cations in several enterprises which have evolved in the context of their businesses.
As the business continued to grow, so would have the workloads on such applica-
tions outgrown the planned expectations.

 The different steps involved and their order of execution which constitute the
process of service modelling and subsequent code generation are depicted in
Fig. 11.3 and explained below:

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

238

• User interactions – service modelling workbench:

 1. Using the application workbench, the analyst or architect designs the service
model providing information such as the data contracts/information models,
service contracts, service binding, policies, the target back-end database type
and optional information regarding the fi nal hosting environment such as
Windows Azure™ and on-premise.

 2. Once the model is fi nalised, the model is persisted for future reference, and,
subsequently, the code generation process is initiated.

• Process – code generation process:

 1. Based on the service model, data contracts and service contracts are generated
by using code template fi les stored in the template store.

SOA Reference Architecture

Service Layer

Data Access Layer

Service Implementation

Service Interface Service Entities

Data Access Component Data Entities

Database

 Fig. 11.1 SOA reference architecture

S.S. Ghag and R. Bandopadhyaya

239

Architect/Analyst

Service
Modeling

Workbench

Code Generation
Process

Template Store

Monolithic Implementation

Generated web service source code

Data Access
Component Data Entities

Service
Interface

Service
Entities

Service Implementation

Service Layer

Data Access Layer

 Fig. 11.2 Application overview

 Fig. 11.3 Tasks and interdependencies in the legacy application

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

240

 2. Referring the generated service contracts, the boilerplate code for the modular
service implementation is generated.

 3. Following which, the data access layer entities are generated using the data
contracts.

 4. Using generated data access layer entities, the data access layer for the target
back-end database type, as confi gured by the user, is generated providing the
interface for all the CRUD operations.

 5. The translator module mapping the service data contracts and data access
layer entities is generated to be used in the business layer.

 6. After all the above steps are successfully completed, the generated code is
packaged, i.e. compiled and built, followed by creation of deployment fi le(s)
for the target hosting environment such as Windows Azure.

 7. Finally, the quality and other effort savings report of the complete process is
generated.

 Though the code generation process has clear separation and abstraction, there is
close dependency among the above operations, i.e. dependency on the state or out-
put of the previous operation. Due to this and in its monolithic implementation
approach, if any operation crashes for any reason, the entire application is brought
down. That is, there is less opportunity for the application to quickly heal itself for
attending to subsequent requests.

11.3.1 Challenges

 Due to the monolithic nature of the implementation, there are numerous challenges
in the architecture which impact the scalability and the availability of the applica-
tion. Some of these are mentioned in the following paragraphs.

 Architectural choices limit scalability : As volume of data (i.e. service defi nitions in
the model) to be handled by the application increases, the demands on the system
to process such requests also increase manifold. Due to the monolithic design
and stateful nature of data processing, the application is unable to offl oad or scale
out to computing nodes other than on which it is currently running. Alternatively
scaling up, although possible, on the same computing node by incrementing
computing resources such as RAM and CPU would result in much higher TCO
(total cost of ownership) of running the application as opposed to having the
workloads scale out to cheaper computation nodes. Moreover, even if the appli-
cation is allowed to scale up, there is a technical limit beyond which the comput-
ing resources like RAM and processor speed cannot be increased.

 Traditional programming approach limits scalability and availability : Since the
execution of the operations in the application is sequential and state is managed
in memory, scaling out the execution environment such as by increasing the
number of processor or machine count may also not help the application to scale
to handle high volumes. The sequential nature of the code execution also forces

S.S. Ghag and R. Bandopadhyaya

241

the system to be rendered unavailable to process additional requests for the entire
duration of the code generation cycle.

 Lack of isolation boundaries impacts software reliability : The different operations
are executed in a single application domain; any faulty operation affects the
entire application execution. The moment any operation crashes for any reason,
the application aborts all the subsequent operations and simultaneously also
fl ushes out the state of all the operations which may have successfully completed
prior to the exception. The application is left in a faulty state, and it is highly
unlikely that it will quickly heal itself unless the entire process is restarted afresh.

 Consumption of system level resources in an uncontrolled manner results in system
confl icts : Since the code generation process requires high-compute resources, its
execution may affect the normal execution of other applications/services in the
same machine.

11.4 Technical Adoption Strategy

 Now that we understand the issues with the legacy application, let us discuss on the
approach adopted to re-engineer the application for achieving the desired benefi ts of
scalability, reliability and availability. We now discuss in detail the strategies
adopted to migrate a monolithic stand-alone desktop application to a distributed
cloud-hosted application.

11.4.1 Application Re-engineering

 With the new application design, re-engineering was done only for part of the appli-
cation where major performance bottlenecks had been observed, which being the
code generation process, while the client interface was mainly left untouched. In the
application re-engineering process, basic operations (as described in the Sect. 11.3)
were re-factored to be stateless by design , i.e. not to rely on information about
operations being stored between interactions, so that, given a task, it can be exe-
cuted independently in a different processor or machine as may be the case to enable
scale-up or scale-out conditions. Here are the steps followed to re-factor the
application:

11.4.1.1 Draw Flowcharts

 In case the program is not properly documented, a fi rst step in the migration process
is to draw out the fl ow of your program using fl owcharts. Flowcharts are a very use-
ful tool to help understand complex or intertwined code fl ows. A fl owchart helps to
identify code ineffi ciencies or code smells [7] such as duplicate code, long methods

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

242

and variable interdependencies. Using the fl owchart, a visual representation of the
different steps traversed by the program to complete a certain operation is presented
to the analyst. This provides the analyst opportunities to “ extract methods ” , as is
discussed in the next step.

11.4.1.2 Breakout Granular Operations

 This is usually the fi rst step in re - factoring [7]: decomposition of monolithic imple-
mentation of the application into granular and independent operations which are
modular. An appropriate granular defi nition of an operation can be arrived by fi rst
drawing out the use case of the overall process as a series of activities required to
be done to achieve the end state. Each activity can be considered as potential opera-
tion candidate. If there is scope for further refi nement of any particular activity,
sublevel use cases can be further created at the activity level and aid in the process
of refi ning the operations defi nition. In our case, the key operations identifi ed were
data contract generation, service implementation generation, data access layer
entity generation, data access layer generation and package deployment. This was
derived based on the use case as depicted in Fig. 11.3 . The approach we discuss
here is considering a top-level view of the application to extract granular opera-
tions. Other low- level code re-factoring strategies can also be adopted to extract
modules from monolithic software code [8].

11.4.1.3 Defi ne Input/Output Operation Parameters

 Each operation should have its input or output parameters defi ned explicitly. Private
variable references, if used, in the legacy code to run across multiple pieces of code
statements should be extracted and be explicitly included as a part of the operations
parameter. This will enable the operation to be executed in an independent manner.
 Data Transfer Object (DTO) pattern is best suited to realise operations which can
meet this requirement. A DTO pattern is simply a container for carrying aggregated
data that needs to be transferred across process or network boundaries. It should not
contain any business logic [9 , 10]. The DTO pattern helps provide abstraction from
object or function internals, thereby increasing potential for reuse.

11.4.1.4 Defi ne and Coordinate Interactions Asynchronously

 Interactions between the operations have to be achieved asynchronously. Since
there would be dependencies between operations in the application (i.e. not all the
operations can be run simultaneously), such operations can be made to communi-
cate or share information/data using asynchronous mechanisms such as queues.
When the prerequisite information/data which may be the output of some other

S.S. Ghag and R. Bandopadhyaya

243

operation is available, the following operation in the process is communicated
asynchronously using an event notifi cation message. This approach helps in scal-
ing the overall implementation both in a scale-up as well as scale-out manner.

11.4.2 Identifi cation of Design Patterns

 The code generation process is re-engineered on the lines of the parallel processing
design pattern. Parallel processing design pattern is a well-known implementation
approach to scale an application so as to handle high volume of requests. Parallel
processing is the execution of one or more task(s), usually in parallel and indepen-
dently, with the objective to achieve a common goal by a group of executing entities
(machines, processors) engaged to do the parts of a high-volume process. This is
applied in the cases where it is possible to break a large process into group of tasks/
operations, and each task can be executed independently without having any depen-
dency on the other task(s) during the course of its execution. Some popularly known
examples of implementation of the parallel processing design patterns are master/
worker and MapReduce (Fig. 11.4).

 Fig. 11.4 Parallel processing design pattern

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

244

11.4.3 Future-State Solution Architecture

 As the legacy code is re-factored, we are in a good position to implement the paral-
lel processing design pattern in the application. In our case, we realised the future-
state solution architecture by leveraging cloud computing building blocks and
infrastructure offered by Windows Azure [11]. Here we provide detail of the same.
We have tried to keep our explanation in context of design patterns so that tech-
niques discussed here may be applied equally well on other cloud computing plat-
forms having similar set of services.

 The future-state solution was implemented as depicted in Fig. 11.5 .
 The key components of the architecture include the following.

11.4.3.1 Service Modelling Workbench

 A service model is prepared in the service designer using the client workbench. The
task manager Web service is invoked by the client to initiate the code generation. A
pointer to the model is passed as one of the input parameters to the service request.
Following are the steps which describe the process of forwarding the service model
to the task manager (also refer to Fig. 11.5):

 Fig. 11.5 Cloud-enabled application architecture

S.S. Ghag and R. Bandopadhyaya

245

• The service model is persisted as an XML fi le by the service modelling workbench.
• The workbench generates a Globally Unique Identifi er (GUID) for every new

request raised. A Windows Azure blob storage container uniquely identifi ed by
the GUID name is created. The XML fi le is then uploaded to this container. This
GUID depicting the container name is then sent to the task manager using the
Web service interface.

• The task manager using the GUID accesses the blob storage and downloads the
service model XML fi le which is contained in the Azure blob storage container
created in step 2 (Fig. 11.5).

 Based on the service designed by the user in the client workbench, the service
model fi le can range to a few hundreds of megabytes in size. The pattern discussed
above provides a more effi cient and reliable approach to processing large volume
datasets. Without having the initiating Web service to handle large datasets, we free
up the task manager services from accepting additional requests received from other
users and in turn improve the throughput of the application. Also, in case a failure
occurs while uploading the service model to the blob storage , say if the storage
services are unavailable or it goes down during the upload process, the user is
immediately prompted of the inability to process the request at the time. This hap-
pens without having to initiate the code generation process request with the task
manager, freeing it from having to worry about failures of other services not really
within its direct control.

11.4.3.2 Task

 A task is a basic unit of work scheduled by the task manager. As discussed in the
application re-engineering section, each granular operation extracted from the leg-
acy code after being identifi ed as being an autonomous part of the code generation
process is defi ned as a separate task, namely,

• Generate data contract .
• Generate service contract .
• Generate service implementation .
• Generate data access layer entity .
• Generate data access layer .
• Create and deploy the deployment package.

 These granular operations defi ned as tasks are considered to be modular func-
tions which can operate independently without relying on external resources such as
shared variables or shared database to complete its assigned task. This design phi-
losophy of building modular functions is one of the key principles of SOA which aid
to maximise reuse. These tasks are the concurrently executable operations activated
by the controller.

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

246

11.4.3.3 Task Manager

 The next component in the architecture is the task manager. A task manager is
responsible for the following:

• Receiving and validating the request from the client with the metadata used to
process the request

• Creating a new entry in the service model processing database indicating the
service request received from the user

• Based on the service model specifi cation, creating separate entries of all the fi les
which are to be generated by the respective tasks

• Preparing the task message for the respective task in the code generation
process

• Distributing the messages using queue to different tasks confi gured in the
controller

 The task manager initiates task by posting job initiation messages to the respec-
tive task queues. The message contains information regarding the job to be executed
by the task. In our solution, the task manager is implemented as a WCF (Windows
Communication Foundation) Web service confi gured as a Windows Azure Web
role . This task manager Web service exposes a service end point to receive the infor-
mation regarding the service model code generation request from the client.

11.4.3.4 Controller

 A controller will centrally manage and activate all the required tasks to successfully
execute the code generation process. The controller is implemented as a Windows
Azure worker role component, which is primarily used to handle batch or offl ine
operations on Windows Azure, and the information regarding the tasks to be acti-
vated is confi gured through the worker role confi guration settings. A controller con-
fi guration setting contains the following information:

• Task module path: A pointer to the module (say a dynamic link library, .dll)
which exposes the entry point for activating the task.

• Task queue: A queue name to raise event triggers for task defi ned in the module
path to initiate its job. The task would be listening for specifi c events on this
queue for any message. The message would contain information required by the
task to process its job. Essentially through this message, the task is given a job to
execute.

 – Queues help in achieving loose coupling between the task manager, explained
later, and the tasks.

 – Queues also enable loosely coupled interactions between dependent tasks. In
case of dependent tasks where it is needed to maintain the order of execution,
once one task is completed, it drops a message with required information in
the queue of the subsequent task to be executed.

S.S. Ghag and R. Bandopadhyaya

247

• Task storage drive: A Windows Azure drive letter, where the fi les generated by
the respective tasks are persisted. A Windows Azure drive is automatically
mounted by the controller for the respective tasks, during the activation process
based on the storage drive letter confi gured here.

 Confi guring tasks in the controller helps in spawning tasks across more than one
controller. On Windows Azure, this is seamlessly achieved by confi guring a sepa-
rate worker role, which instantaneously provisions VMI s (Virtual Machine Images)
while hosting the app on Windows Azure. This confi guration provides fl exibility to
scale out the controller both at design time as well as runtime (Fig. 11.6).

 With this approach of scaling out the controller, we are fundamentally able to
scale out the task handler and hence able to achieve high throughput.

11.4.3.5 Tracking Service

 On completion of respective code generation tasks, each task updates its status of
execution to a centralised status table. This tracking service tracks the task status
and calculates the overall code generation process completion percentage. On overall
completion of all tasks, it notifi es the consolidator (Figs. 11.5 and 11.7) by posting
a message in the designated queue.

 Fig. 11.6 Scaling out of controller to increase application throughput

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

248

 The tracking service maintains a log which it continuously updates with the
current processing percentage completed and also the current status of overall
code generation. The service model workbench using this log provides the details
on the dashboard to monitor the overall completion percentage and the status of the
code generation process. Accordingly in case of any anomaly, corrective steps may
be initiated.

 Once all the tasks are completed, which will be identifi ed by the tracking service,
the tracking service notifi es the same to the consolidator by posting a message in the
designated queue for further consolidation of all the generated different code fi les.

11.4.3.6 Consolidator

 On being notifi ed by the tracking service, the consolidator process consolidates the
generated source code fi les from all the task-specifi c Azure drives into a well-
structured .net solution and subsequently packaging these into a single compressed
fi le. The compressed fi le is then uploaded to the same container in the blob storage
where the service model had been uploaded earlier during the initiation process by
the client, i.e. the service modelling workbench. The consolidator component is
implemented as a Windows Azure worker role.

 The status of the entire process is monitored from the service modelling work-
bench. Once all the tasks are completed and the compressed fi le is uploaded by the
consolidator, the fi le is available for download from the workbench client.

 The resultant heterogeneous system is highly scalable, available and reliable
capable of handling high-volume request and provides high throughput.

Concurrently executing
operations/tasks

The status of execution
of task is updated to the
Tracking store

Tracking Service monitors status of all the tasks and
calculates the overall percentage of completion of
code generation process.

Once the overall code
generation process is
complete. Consolidator is
notified by a message Consolidator Queue

Tracking Store

Generate the source code of different layers of the web service

Data Contract Service Contract Service
Implementation

Data Access
Layer Entity

Data Access
Layer

 Fig. 11.7 Task-tracking mechanism

S.S. Ghag and R. Bandopadhyaya

249

 A brief summary of what has been discussed so far is depicted in Fig. 11.8 .
A reference of the designed service model is passed to the code generation process.
The code generation process on the basis of the model received activates the
tasks, namely, generate data contract, generate service contract, generate service
implementation, generate data access layer entity and generate data access layer. All
these tasks update their execution status in a tracking store which is monitored by
the tracking service to trigger the completion of the code generation process. Once
the code generation is completed, all the generated fi les are consolidated and com-
pressed in a package for download or deployment to a hosting environment like
Windows Azure. In this pattern, all the driving services like task manager, controller
and consolidator and also the different tasks are designed so that they may be elastic
as the workload demands and dynamically scale to handle varying workloads.

11.5 Windows Azure Cloud Components to Implement
the Proposed Architecture

 The cloud-based architecture explained above leverages the building blocks provided
by Windows Azure. But as discussed earlier, similar building blocks from other
cloud computing infrastructure like Amazon and Google can also be leveraged

 Fig. 11.8 Tasks and interdependencies in the re-engineered application

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

250

equally effectively. The different Windows Azure components [11] used are given
below:

 1. Azure table storage to maintain the execution logs and track status

• All the major steps in the tasks are logged in Azure table with some informa-
tion regarding the steps. This helps in understanding the health of each task
and also the current status of the task. These logs are used to diagnose any
issue if it occurs during the course of execution of the operation and also to
understand the overall code generation status.

 2. Azure blob storage used as template store and fi nal destination for the generated
code package

• The different operations generating the various code fi les by using text-based
templates. These templates are kept in the Azure blob.

• The service model once designed is kept in the Azure blob to be referred by
the cloud-based code generation process for further processing.

• The fi nal package comprising of all the code fi les generated by the different
operations is kept in the blob storage.

 3. Azure queue storage for asynchronous communication

• The communications between the task manager and the different tasks and
also between the dependent tasks are achieved by dropping messages into the
respective Azure queues.

 4. Azure drive as intermediate store for generated code fi les

• Each task has their dedicated Azure drive mounted to be used to temporarily
store the fi les generated. The consolidator then consolidates all the fi les from
all the drives in a proper .net solution format and packages in a single com-
pressed fi le.

 5. Azure Web and worker roles for implementing the task handlers

• Web role is used to build the task manager which is used to handle task distri-
bution responsibilities.

• Worker role is used to build the controller which activates all the tasks.
• Worker role is used to build the tracking service to monitor the execution of

all the tasks assembled by the controller.
• Worker role is also used to build the consolidator which is responsible to cre-

ate the fi nal deployment package.

11.6 Benefi ts Realised

 Apart from leveraging the benefi ts of cloud infrastructure such as elastic scalability, bet-
ter reliability and higher availability, the following additional benefi ts are also achieved:

S.S. Ghag and R. Bandopadhyaya

251

 Improved process isolation : Since the operations are distributed across separate VM
nodes and seconded by the fact that all the communications between different
components are asynchronous, any faulty operation does not affect the entire
operation. The moment a task is aborted for any reason, only that particular task
needs to be restarted without affecting the rest of the process.

 Improved application throughput : Unlike in the earlier procedural-driven processing
approach, new requests could not be processed by the system unless the entire
process had been completed, which limited the throughput of the application.
With the new design, the moment any task is completed, it is already available to
serve the next request in the queue. Hence, overall processing time required to
serve the request is shortened which enhances the overall throughput of the
system.

 Better workload management : Since in this approach, the activation of different
tasks is driven by a confi guration of the controller, the task distribution can be
achieved even across controllers for better load handling.

• Separate worker roles may be started with different set of tasks confi gured. In
case a task demands more resources, it can be moved to a separate worker role
where few or no other tasks have been confi gured by the controller. This helps
in an effi cient utilisation of the computing resources on the cloud and effec-
tive optimisation of operating costs.

• Some tasks can be repeated across more than one controller so that if a par-
ticular task in a controller crashes for any reason, there will be other instances
of the same operation active to support the new request. Higher availability
and fault tolerance are thus achieved.

 SaaS-ifi cation of traditional desktop applications : Separating the desktop-based,
process-intensive, service engineering code generation operation to the cloud
offers the ability of offering the application as a multi-tenant “SaaS” (Software
as a Service)-enabled application. In our case, service engineering capabilities
are now available as scalable on-demand service to the end consumer.

11.7 Best Practices

 Here we share some of the best practices learnt during the course of our experience
in moving an on-premise monolithic application to a modern cloud-based applica-
tion architecture.

 Loose coupling : Make the application/service components loosely coupled. Loose
coupling could be best achieved using messaging technologies such as queues.
This improves the scalability and hence the overall performance of the system in
concern.

 Design to handle idempotency : If a queue is used for asynchronous communication,
avoid the messages to be processed more than once by multiple worker processes.

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

252

If the same message reappears in the queue for any reason after it has been success-
fully processed, there must be a mechanism to understand that the message has been
already processed and accordingly either delete or ignore it.

 Design for failure : Developing applications targeted for public cloud is about
“designing for failure”. In the traditional approach of deploying an application in
the data centre, applications are designed and developed by relying on the
 underlying infrastructure such as reliable memory and high-speed reliable net-
works to meet their SLAs primarily because they rarely tend to fail. However,
moving to a public cloud infrastructure would require some unlearning and
understanding of the cloud environments. On the cloud, applications would need
to be designed and developed under the assumptions that cloud infrastructures
would tend to fail more often than not. Hence, each subsystem of your applica-
tion would need to be designed and developed with this basic premise in mind.

 Handle poison messages : For any reason if the message read from a queue is not
processed properly and the processing application fails/aborts, then the message
is returned back to the queue (probably after some timeout duration). If there is
any issue with the information in the message, then this message has to be
removed; otherwise, any other instance of the processing application will again
try to process it and will eventually fail.

 Think asynchronous : Move from a synchronous online processing to an asynchro-
nous offl ine processing. This approach would help to free up client resources and
push the heavy processing computation tasks to a more scalable platform like
cloud.

 Adopt parallel processing pattern : One of the best practices to build high-
performance application is to avoid long-running resource-exhaustive task;
instead, if possible, break it into small tasks and run these tasks simultaneously,
e.g. in different threads and processors.

 Short-running transactions : Keep duration of tasks short. Tasks needing a lot of
time block the resources, resulting in messages being piled up in the queue.
Short-running tasks can release resources quickly and help optimise the utilisa-
tion of the resources in a uniform and effi cient manner. If the tasks are running
long or you fi nd messages being piled up in the queues, then there could be a
possible opportunity to re-factor the code into a separate operation. Another way
of running transactions for shorter duration could be to look at the intensity of the
transaction being processed. For example, if a task is processing ten fi les, you
may want to reduce the fi le size to a smaller chunk so as to shorten the queue
lengths.

 Use cloud resources cautiously : The usage of cloud infrastructure provides scal-
ability, availability, etc., but suboptimal use of the same may lead to high cost of
execution. So when there is less demand, relinquish the unused resources. For
example, to handle the increase in the load, the instance count of a Windows
Azure role can be increased, but as soon as the load decreases, decrease the
instance count accordingly.

 Avoid chatty communication : Avoid this between components especially when
using cloud resources like Windows Azure table. The cost for using such

S.S. Ghag and R. Bandopadhyaya

253

resources also depends on the number of transactions done on such resources.
If possible, try to implement transaction in batches during a single call.

 Confi gure proximity deployments : While leveraging Windows Azure, make use of
affi nity groups. Resources within the same affi nity group are kept as close as
possible in the data centre, and this reduces the communication time between the
different cloud resources.

 Use local compute storage facility : While using Windows Azure roles, leverage
local storage for temporary data, i.e. data which need not to be persisted and
needed only for short duration. This can help minimise transactions to the stor-
age service and hence transactions cost to the storage service.

 Instrument your code : Moving from a stand-alone to a distributed environment
such as the cloud, manageability of the application can be highly impacted. As
observed with the target architecture discussed in this chapter, with an increase
in the heterogeneous nature of the design, the overall complexity of the system
would tend to also increase. Further with the code generation process being
deployed in a public cloud, administrators would tend to lose the fl exibility of
managing and control the target environment. This can lead to a lot of
unknowns. It thus becomes imperative to instrument application code which
provides regular runtime updates on the services executing the process. This
will help developers as well as administrators to take corrective measures as
and when an incident occurs. For instance, when there is sudden surge in the
workload, the instrumentation code can help the administrator take evasive
action and scale out the executing task nodes. Another instance could be for
developers to investigate issues in code, say to investigate on a particular task/
process which ends abruptly.

11.8 Summary

 In this chapter, we have discussed in detail the process of re - engineering a mono-
lithic stand-alone application to a distributed cloud application so as to be able to
seamlessly scale and handle rapid growth in workload by leveraging cloud infra-
structure and services.

 We have discussed the traditional architecture of a typical legacy application and
some of the key challenges faced to support scalability. Subsequently, we covered
the technical adoption strategy to migrate the application to a distributed cloud
model by leveraging the parallel processing pattern . A detailed future-state archi-
tecture was proposed on the lines of the parallel processing pattern utilising the
cloud infrastructure and services offered by Windows Azure. Some of the important
benefi ts realised such as elastic scalability, SaaS-ifi cation and process isolation
were highlighted as a result of the re-hauling of the application. We fi nally con-
cluded by briefl y listing down some of the best practices from the lessons learnt
during the implementation of this project.

11 Technical Strategies and Architectural Patterns for Migrating Legacy Systems…

254

 References

 1. Artus, D.J.N.: SOA realization: service design principles. Retrieved from http://www.ibm.com/
developerworks/webservices/library/ws-soa-design/ (2006). Accessed on 15 July 2012

 2. Haas, H., Brown A. (eds.): “Web services glossary” W3C Working Group Note (2004).
Accessed on 15 July 2012

 3. MSDN: Service Oriented Architecture (SOA), Microsoft MSDN Library. Retrieved from
 http://msdn.microsoft.com/en-us/library/bb833022.aspx (2010). Accessed on 15 July 2012

 4. MSDN: Design considerations for S+S and cloud computing, Microsoft MSDN library.
Retrieved from http://msdn.microsoft.com/en-us/architecture/aa699439 (2009). Accessed on
15 July 2012

 5. Burton: A guidance framework for applying SOA design principles. Retrieved from http://
www.gartner.com/id=1405628 (2009). Accessed on 15 July 2012

 6. MSDN: Application domains. Retrieved from http://msdn.microsoft.com/en-us/library/
2bh4z9hs(v=vs.100).aspx (2012). Accessed on 19 July 2012

 7. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley, Reading. http://www.pearsoned.co.uk/Bookshop/detail.
asp?item=166518 (1999)

 8. Terra, R., Valente, M.T., Bigonha, R.: An approach for extracting modules from monolithic
software architectures. In: IX Workshop de Manutenção de Software Moderna (WMSWM),
pp. 1–8. http://www.ricardoterra.com.br/publications/2012_wmswm.pdf (2012).

 9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Boston. http://
www.pearsoned.co.uk/Bookshop/detail.asp?item=312697 (2003)

 10. MSDN: Data Transfer Object, Microsoft MSDN library. Retrieved from http://msdn.micro-
soft.com/en-us/library/ff649585.aspx (2010). Accessed on 15 May 2012

 11. Ghag, S.: Primer – Windows Azure. Retrieved from http://www.infosys.com/cloud/resource-
center/Documents/primer-windows-azure.pdf (2010). Accessed on 16 July 2012

S.S. Ghag and R. Bandopadhyaya

http://www.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design/
http://msdn.microsoft.com/en-us/library/bb833022.aspx
http://msdn.microsoft.com/en-us/architecture/aa699439
http://www.gartner.com/id=1405628
http://www.gartner.com/id=1405628
http://msdn.microsoft.com/en-us/library/2bh4z9hs(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/2bh4z9hs(v=vs.100).aspx
http://www.pearsoned.co.uk/Bookshop/detail.asp?item=166518
http://www.pearsoned.co.uk/Bookshop/detail.asp?item=166518
http://www.ricardoterra.com.br/publications/2012_wmswm.pdf
http://www.pearsoned.co.uk/Bookshop/detail.asp?item=312697
http://www.pearsoned.co.uk/Bookshop/detail.asp?item=312697
http://msdn.microsoft.com/en-us/library/ff649585.aspx
http://msdn.microsoft.com/en-us/library/ff649585.aspx
http://www.infosys.com/cloud/resource-center/Documents/primer-windows-azure.pdf
http://www.infosys.com/cloud/resource-center/Documents/primer-windows-azure.pdf

255Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_12, © Springer-Verlag London 2013

 Abstract Cloud computing is currently generating tremendous excitement in the
IT industry. However, most cloud initiatives to date have focused on the delivery of
computing services to end users, rather than on improving the engineering and gov-
ernance of software systems. The cloud has the potential to revolutionize the way
software is developed and governed and to consign much of the artifi cial complexity
involved in software engineering today to history. It not only holds the key to reducing
the tensions between agile and “heavyweight” methods of developing software, it
also addresses the problem of software license management and piracy – software
in the cloud cannot be copied! The cloud also promises to unlock the potential of
large, heterogeneous distributed development teams by supporting social interac-
tion, group dynamics, and key project management principles in software engineer-
ing. In this chapter, we outline the motivation for a cloud-driven approach to
software engineering which we refer to as Cloud-Aided Software Engineering
(CASE 2.0) and introduce some key innovations needed to turn it into reality. We
also identify some of the main challenges that still need to be addressed and some
of the most promising strategies for overcoming them.

 Keywords Cloud computing • Enterprise computing • Distributed software
engineering • CASE

 Chapter 12
 Cloud-Aided Software Engineering:
Evolving Viable Software Systems
Through a Web of Views

 Colin Atkinson and Dirk Draheim

 C. Atkinson
 Software Engineering Group , University of Mannheim,
 Mannheim , Germany
 e-mail: atkinson@informatik.uni-mannheim.de

 D. Draheim (*)
 IT Service Management Division , University of Innsbruck,
 Innsbruck , Austria
 e-mail: draheim@acm.org

256

12.1 Introduction

 Cloud computing is currently generating tremendous excitement in the IT industry,
and hardly a day goes by without the announcement of a major cloud initiative by
one of the big IT companies. However, most initiatives to date have focused on
leveraging the cloud for supporting the delivery of computing services to end users,
rather than on the advantages that can be gained by using the cloud to improve the
engineering and governance of software systems. We believe the cloud has the
potential to revolutionize the way software is developed and governed and to
consign much of the artifi cial complexity involved in software engineering today
to history.

 Many strands of Internet-based, distributed computing are converging around the
notion of “the cloud” [1]. These range from the Internet-based provision of virtual
platforms (platform-as-a-service) and utility-level services (infrastructure-as-a-
service) to fully fl edged, customized software applications (software-as-a-service)
[2]. This accelerating convergence is having a dramatic impact on the whole IT
industry and has energized all big IT companies to leverage the cloud in their prod-
uct portfolios. However, the cloud revolution has so far focused almost exclusively
on the “use” and “packaging” of software rather on its development and engineer-
ing. Although software engineering is arguably one of the most critical strategic
competences of businesses and society today, applying the benefi ts of the cloud to
software engineering has received relatively little attention.

 The impact of cloud-based software engineering is driven by two main forces:

• Empowerment of large, heterogeneous, distributed software engineering teams
• Ability to better control of software usage and distribution and thus avoid

copyright infringement and misuse of software

 However, this potential must be unlocked. “Cloudifying” existing tool suites and
using them with traditional working practices will not take off. The key enablers for
successful cloud-based software engineering are:

• Strict integration of all aspects of software development and run-time mainte-
nance through genuinely view-based software visualization metaphors

• Strict awareness and systematic treatment of group dynamics in software engi-
neering projects

 In many ways, the landscape of challenges and opportunities resembles that
which preceded the fi rst revolution in software engineering infrastructures that took
place in the 1980s under the banner of Computer-Aided Software Engineering
(CASE). However, we believe the impending revolution will be more far reaching
and has a much deeper impact than the fi rst – we think it will radically change the
way software engineers think, work, and interact. To highlight the contrast with the
fi rst revolution, we suggest the banner Cloud-Aided Software Engineering (CASE
2.0) for the impending changes in the way software is engineered.

 The 1990s saw a major trend toward off-shoring projects [3]. Overall, off- shoring
did not take off because distributed teams were not properly supported – both with

C. Atkinson and D. Draheim

257

respect to artifact organization and work organization. Superfi cially, the main problem
faced in off-shoring projects is the extra effort needed to coordinate distributed,
heterogeneous teams. In fact, however, the main problem is the hidden passive resis-
tance of many project participants to the consequences of off-shoring. Since off-
shoring initiatives are effectively sourcing initiatives, they have the potential to
provoke power shifts in enterprises and this can easily provoke resistance. Major
tool vendors who are turning their tool suites into cloud-based services are currently
failing to take this fact into account. To overcome this problem, underlying software
description views need to be supported by sophisticated navigation and process
enactment approaches that are aware of group dynamics and team management
principles.

 Another fundamental problem is copyright infringement which places an enor-
mous burden on both software vendors and software customers. The former have
enormous auditing challenges, while the latter have complex software license man-
agement challenges. Ensuring authorized use of software is therefore becoming and
increasing obstacle to the development of vibrant software markets with robust
investment into new products. Since the cloud-based delivery of software eliminates
the copyright infringement problem, it will have a major impact on the economics
of software markets and encourage a new wave of investment in new software
products.

 The organization of this chapter is as follows. In the next section, we set the stage
by describing the current state of the art in software engineering (SE) in general and
with respect to the emerging challenges of globalization, highly distributed teams,
and software asset management. We also discuss the past and future economics of
the software industry including a discussion of off-shoring and outsourcing initia-
tives. Section 12.3 characterizes today’s concept-tool gap (i.e., the challenge pre-
sented by the complexity of today’s software engineering tool landscapes) and
reviews the current cloud-based utilization of software engineering tools.
Section 12.4 is devoted to our vision of tool-related key enablers of tomorrow’s
cloud-based software engineering, that is, the orthographic software modeling
approach with its single underlying model and on-demand view generation.
Section 12.5 is devoted to the process-related key enablers. Important topics that are
addressed by this section are group dynamics and team management principles, the
viable software engineering life cycle, the viable software product, artifact and
project management integration, and, last but not least, the necessary focus shift
toward management. We discuss related work throughout the chapter. The chapter
concludes with Sect. 12.6 .

12.2 Challenges in Today’s Software Engineering Projects

 The opportunity to leverage cloud computing in software engineering (SE) could
not have come at a better time. In recent years, software engineering researchers,
methodologists, and tool vendors have come up with several powerful new

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

258

“paradigms” for engineering software systems that individually offer signifi cant
benefi ts over fi rst-generation development methods. However, these methods are
largely incompatible with one another and are diffi cult if not impossible to use
together. On the one side, we have the “heavyweight” methods which add extra
concepts and artifacts to the traditional ingredients of software engineering in order
to optimize the way in which certain core concerns are addressed such as model-
driven development (abstraction), component-based development (composition),
and product-line engineering (variation). On the other side, there are the agile
methods, which discourage the use of any software description artifacts other
than “code” and shun any activities that do not directly lead to the production of
“software.” The core issue is the very notion of what software is (traditional code or
more sophisticated, higher- order constructs) and how it is described (via traditional
programming languages or higher-level “models”).

 When applied in an appropriate way, the cloud offers radical solutions to these
problems and has the potential to revolutionize the way in which software is engi-
neered and managed. In fact, engineering and management could become just one
of the many concerns associated with cloud-hosted software applications, alongside
the concerns of other stakeholders including owners and end users. The key insight
needed to unlock the potential of the cloud for software engineering is to adopt a
genuinely view-based metaphor supported by a sophisticated navigation paradigm
and process enactment mechanisms aware of group dynamics and team manage-
ment principles.

12.2.1 Complexity in Today’s Software Engineering Projects

 Forty years after the NATO conferences [4], we still encounter massive time and
cost overruns in today’s software engineering projects. We are convinced that what
we eventually need in software engineering is a focus shift onto the full spectrum of
management issues that eventually takes into account the whole management body
of knowledge [5]. There are two basic challenges: the fi rst is to deal with problems
of group dynamics in the customer-encompassing project team and the second is to
deal with the problems of cultural change management at the customer’s enterprise.

 The social context in which software is engineered is complex. Large organiza-
tions can rarely arrange for their software to be developed by small, ring-fenced
teams with few external interaction points. Today, the components of large software
systems are brought together from many places, including formally outsourced sub-
projects and informally reused open source software, and the number of communi-
cation paths of the individuals involved has exploded through collaboration tools
(e.g., wikis), social media [6], and professional networking Web sites such as
LinkedIn. All these trends raise the importance of optimally leveraging and manag-
ing the group dynamics involved in the engineering of software.

 Figure 12.1 shows a typical software development scenario. Large projects
can consist of numerous teams distributed between a main contractor, several

C. Atkinson and D. Draheim

259

sub- contractors, and customers. A steering committee is often needed to track the
project activities and costs from a governance perspective. A key role is played by
the chief project manager who should ideally be the central hub for coordination,
communication, and control in order to streamline all the activities in the project.
However, in practice, project managers are usually overwhelmed by the informal
coordination needs of project teams leading to constant crisis fi ghting or even chaos.
The ideal communication pattern is visualized by the thin arrows in Fig. 12.1 .

 In the chief project manager’s organization, which is considered the project host,
this ideal communication pattern is a kind of hierarchical information fl ow. The role
of the chief project manager and his offi ce is to orchestrate the employees, custom-
ers, and sub-contractors. Of course, in large projects, it would not be possible for a
project manager to serve as a kind of facade to the organization without becoming a
bottleneck. All stakeholders must clearly be allowed to communicate directly with
one another. However, what we tried to visualize by the thick arrows in Fig. 12.1 is
a scenario in which the pair-wise communication between individual stakeholders
starts to overwhelm coordination through the chief project manager. This is a severe
risk for project success.

 Fig. 12.1 Seasoned view of large software development projects

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

260

12.2.2 Past and Future Economics of the Software Industry

 Although the IT industry is relatively young compared to other long-established
disciplines like construction and civil engineering, it is already old enough to identify
an important trend that has been underway since its early days and can be summarized
under the buzzword “professionalization.” This professionalization can be observed
in the IT sector in general and in all of its sub-branches, especially the software
industry. The observable IT professionalization has several mutual dependent aspects.
IT started as an innovative technology that in its early days provided unique selling
points for those companies that exploited it. It seems that things have changed.
Authors like Nicholas Carr [7 , 8] express that IT today is mainstream; that is, its
existence does not offer unique selling points, rather, its nonexistence must be
considered a risk for today’s enterprises. It is debatable whether such a mainstream
viewpoint is adequate in general. We think that a more sophisticated viewpoint is
appropriate.

 The mainstream viewpoint seems to be appropriate for base IT services embod-
ied in the widespread enterprise applications used in modern enterprises, that is,
enterprise resource planning systems, offi ce automation tools, and enterprise con-
tent management systems (see [9] for an attempt to catalogue the several means of
IT support in today’s enterprises). However, the mainstream argument is obviously
not true for all possible IT support. It is not foreseeable which new IT trends may
turn into proven unique selling points for companies in the future and, of course,
may undergo a transformation into mainstream technology afterward. Take decision
support systems as an example. Decision support system initiatives – from data mart
and data warehouse [10] approaches to high-end active data warehouse [11]
approaches – have not taken off in many companies that tried them. Also, the pro-
duction sector [12] still shows the potential to create unique selling points by the
strategic exploitation of information technology (see [13] for a discussion).

 Nevertheless, it is fair to say that the mainstream argument is appropriate for basic
IT support. In parallel to IT technology becoming a commodity, IT support has
become more and more professional over the years. IT support started in enterprises
with relatively small, agile expert teams. Even in otherwise very strictly organized
organization, the IT support teams often formed work cultures similar to those
described as expert organizations by Henry Mintzberg [14]. Against this background,
it is possible to understand why the transformation to an improved and adequate
business alignment of IT support groups has been and still is often accompanied by
tensions and often must be subject to substantial change management efforts.

12.2.3 Cloud as an Aid Against Copyright Infringement

 The software industry is challenged by copyright infringements . A key ingredient of
cloud computing is the fact that software in the cloud is not copyable. This sounds
very trivial but actually is highly profound and important. Note that it is a center

C. Atkinson and D. Draheim

261

pillar of the free software philosophy [15] that software is copyable . However, in the
cloud, software is not copyable. The free software community [15] is a sub-culture
[16] that massively overlaps the hacker’s community [17], the younger Internet net-
working communities [18], and the digital piracy movement [19] and shares with
these groups certain ethics and visions concerning society and economics. The free
software community, built around enthusiastic programmers, is currently gaining
impetus from the rapidly growing Internet community movement. The basic phi-
losophy of the free software community is that since software products are totally
different from other products because they are immaterial and copyable, software
should not be possessed by anybody. The free software community builds software
based on this alternative approach with a strong motivation to demonstrate what is
possible without profi t motivation. In fact, hard-core advocates of open source soft-
ware are in favor of changes to copyright law, so that ultimately the arbitrary copying
and exchanging of software would be legal. More moderate strands of opinion also
exist, which regard copying of somebody else’s software as a minor transgression.
However, until software producers are forced to give away their code (i.e., executable
code or source code) which is not realistically foreseeable, the cloud is the only
effective way of tackling copyright infringement. At the same time, we do not
believe that the existence of the cloud threatens proven open source business models
[20] and therefore do not think that it will rule out these business models.

 Since the access to software in the cloud is account based, it offers perfect,
100 %-safe copy protection. Of course, customers can pass around their account
data, and it is questionable whether any cloud license model should forbid that.
However, the cloud provider can technically detect if an account is used simultane-
ously by more than the entitled person. It might be technically possible to circum-
vent the software provider’s security with respect to this and actually have some
access for more than the entitled person; however, such misuse of the account would
be risky and even more important would not scale at all so it would not be cost effec-
tive. Even if parts of the cloud-based software product rely on mobile code (e.g., the
client interface description and active client interface code), crucial parts of the
cloud-based software (e.g., the business logic) will never become visible as code to
the customer.

 Of course, all this is only true for those software products that are cloudifi able
(i.e., amenable to migration to the cloud). It is not true, for example, for embedded
code or mobile code. It is also not true for code that is distributed as part of an open
source business model [20]. It is also not true for hardware-related code. Even if
hardware itself is subject to cloudifi cation by virtualization, because more and more
server hardware vanishes from private data centers and appears more and more in
the on-demand data centers of the cloud, it is not true for hardware-related code in
general. Ubiquitous computing [21] is based on the vision of more and more
processor- based devices around us in everyday life, and with current mobile devices
and computers, the fi rst wave of ubiquitous computing is becoming a reality.
However, a large class of software products is cloudifi able and encompasses crucial
parts of the software supporting today’s enterprises: ERP (enterprise resource plan-
ning systems), offi ce automation tools, ECM (enterprise content management

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

262

systems), many instances of established CSCW (computer-supported collaborative
working) and emerging social software [22], decision support, BI (business intelli-
gence), workfl ow technology [23] and BPM suites (business process management)
[13], PPS (product planning systems), even MES (manufacturing execution systems),
B2C portals (business-to-customer), and B2B (business-to-business).

 The possibility of copyright infringement is not only a burden for the software
vendor but also for the customer. It is the customer’s duty to comply with copyright
laws and also to prevent copyright infringements by its employees. A copyright
infringement is not necessarily the result of software piracy , that is, the deliberate
bootlegging of a software product. It can happen as the result of lack of awareness
or slackness. Paradoxically enough, it is often the software producers themselves
that foster this slackness at the customer’s side by the presales and sales teams that
often suggest that slight copyright infringements are acceptable in pricing processes
and license negotiations.

 It is the software customer’s duty to appropriately inform and instruct its employ-
ees about copyright issues. In order to be on the safe side, a professional software
asset management system [24] must be established in the customer’s enterprise.
The objectives of software asset management are systematic alignment of the soft-
ware strategy with business goals and the professional procurement of software.
However, once enterprises get beyond a certain size, they struggle simply to get the
copyright problem under control. The larger and more heterogeneous a company,
the greater the challenge it faces to keep track of its software installations. In strictly
administered organization, that is, machine organizations [14] like banks or insur-
ance companies, it might be easy to keep track of the installed software regardless of
how large a company is. However, in organization with individually and distributed
administered workplaces, software management can easily become a nightmare.
Software producers often contract auditors with copyright surveillance, creating
extra workload for the customer in terms of regular audits.

 With an effective copy protection mechanism, investments into, and exploitation
of, software products become substantially more calculable and much easier to han-
dle, with consequent long-term decreases of software. Therefore, we are convinced
that this copy-protecting aspect of the cloud will further boost investments into
software development and will result in a more vibrant, competitive software
market.

12.3 Accidental Complexity in SE Tools and Environments

 Federick Brooks introduced the terms essential complexity and accidental complex-
ity in the 1970s to distinguish between the complexity that is inherent in the under-
lying problem and the complexity that results from the suboptimal nature of the
tools (including conceptual tools) used to build IT solutions [25]. Still today, soft-
ware engineering can be characterized as a constant battle with accidental complex-
ity, at all levels, phases, and concerns of a project. The problems with accidental

C. Atkinson and D. Draheim

263

complexity become immediately apparent when setting up the infrastructure for a
modern software engineering project. In addition to a core set of programming
tools, a modern integrated development environment usually includes a vast array
of additional tools dealing with all kinds of concerns ranging from requirement
elicitation and system modeling to bug tracking, deployment, and software trans-
portation. In fact, it is generally accepted that a typical software engineering envi-
ronment today should include tools to support:

• Artifact production
• Artifact management
• Artifact change management
• Product deployment and transportation management
• Artifact quality management
• Project management
• System monitoring

 Using tools providing such a wide range of facilities would not be a problem if
their facilities were orthogonal and consistent. However, this is rarely if ever the
case. The tools populating a modern software development environment are invari-
ably purchased from a variety of different vendors, and each usually has its own
proprietary representation format and artifact navigation approach. Moreover, they
invariably overlap in the functionality they provide, as illustrated on the left-hand
side of Fig. 12.2 , so that there are usually many solutions for the same task. In con-
trast, as illustrated by the right-hand side of Fig. 12.2 , the services offered by a
software engineering infrastructure should ideally be complete, consistent, and
redundancy-free.

 Further artifi cial complexity becomes apparent as soon as software engineering
artifacts are developed using such heterogeneous environments. In particular, there
is usually a large overlap in the information captured by artifacts, which means

 Fig. 12.2 Normalization and alignment of CASE tool services

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

264

there are usually many ways to describe the same thing. This not only requires
software engineers to learn many different representation languages and the
relationships between them, it creates the scene for a tremendous consistency
management problem where changes in one artifact logically require changes to
many other artifacts to keep all information consistent. Although some tools are
able to maintain consistency and tracing between their own artifacts, the task of
maintaining consistency across a heterogeneous suite of tools and artifacts is nigh
on impossible. The other main problem relates to the support for and enforcement
of processes, rules, and policies across the artifacts and services supported by the
software engineering environment. Process integration is the highest and most chal-
lenging level of integration and is consequently the least well supported in today’s
tools. Moreover, where it is supported, it tends to be rather limited and restricted to
immediate usage process management. Deeper, project-wide processes dealing with
fundamental project and people management issues are rarely if ever supported. Not
only do they transcend individual tools, they deal with the interaction within and
between teams. The lack of such support therefore becomes particularly problematic
in larger projects, where the need to support teamwork and manage group dynamics
is particularly acute.

 An ideal, mature software development environment is a tool suite that possesses
certain characteristics – namely, completeness, consistence, and process awareness.
Completeness and consistency means that all the needs for tool support should be
satisfi ed, and all developers should use the same feature to support the same issue.
Process awareness means that the software project should be governed by a mature
software development process. The tool suite should support this process, that is,
the relationship of the tool suite and the software process should be well under-
stood. We coin the term normalized software development environment for such an
ideal tool suite. The tool suite should offer not only support for the complexity of
the artifacts but also support for the complexity of the teamwork, that is, team coor-
dination, team control, and team knowledge management [6 , 9].

 The tool integrator’s contribution to project success is crucial and immensely
challenging. In concrete projects, the plethora of tools can become a maintenance
nightmare. To overcome this problem, a strictly view-based approach to software
development is needed. Each tool materializes a view onto the artifacts, activities,
and problems in the projects. A future-generalized software engineering platform
must realize these views but must overcome technical and conceptual redundancies
and inconsistencies.

12.4 View-Driven Software Engineering

 The fi rst key step needed to fully leverage the cloud for software engineering is to
move to a paradigm in which “everything is a view.” This tenet has to be applied
universally and rigorously, so that all engineers, indeed all stakeholders, can only
access or visualize information about the system via a view. Moreover, the views

C. Atkinson and D. Draheim

265

must be genuine in the sense that they are windows onto, or derived from, a single
underlying source of information. They must not be parts of a lattice of information
sources in which each represents a small piece of the overall puzzle. On the con-
trary, as illustrated in Fig. 12.3 , each view must be generated on demand from the
single underlying information source, or single underlying model (SUM), and all
updates performed via views must be synchronized with the SUM in the style of a
confi guration management system such as SVN or CVS. Obviously, the idea is that
the SUM would be hosted on the cloud, while the views are generated on demand
for visualization via clients.

 Notice that traditional high-level source code such as Java no longer plays a spe-
cial role in such a vision of view-based software development projects. If an engi-
neer wishes to work with a code view of (part of) the system under development,
this is simply created as “just another view.” Tracing and round trip engineering are
therefore automatically taken care of as a side effect of the view-generation and
SUM-update transformations rather than a multitude of pair-wise correspondence
rules between individual views.

 A move toward a strictly view-based software engineering environment of this
kind would have major benefi t for developers. First and foremost, it would free
them from any artifi cial complexity related to the integration of heterogeneous rep-
resentation formats and overlapping diagram types because views could easily be
optimized for individual stakeholders. Second, as long as the format of the SUM
(i.e., the SUM metamodel) is an open standard, software engineers can relatively
easily add their own customized views by writing the appropriate transformations to
and from the SUM and, if necessary, extending the SUM with new model elements.

 Fig. 12.3 On-demand view generation

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

266

In fact, over time what we call “tool vendors” today will become “view vendors”
who sell sophisticated off-the-shelf views for visualizing and/or editing the infor-
mation in the SUM in new ways.

 Finally, if a single transcending navigation metaphor could be found which
allows all defi ned views to be accessed in a clean, simple, and coherent way, soft-
ware engineers would be freed from the artifi cial complexity of having to learn and
work with the idiosyncratic navigation approaches of the many tools in large indus-
trial suite. They could, instead, create and work with views as if they were working
with a single, unifi ed, super-integrated software engineering environment.

 Based on our project experiences with multidimensional modeling in the KobrA
method as described in [26], we have elaborated a strictly view-driven software
engineering tool at the University of Mannheim in which view navigation is inspired
by the orthographic projection metaphor that underpins CAD tools [27]. We there-
fore refer to the approach as orthographic software modeling (OSM). Figure 12.4
shows three distinct views of a software system being projected along three dimen-
sions, to highlight the analogy with the CAD of physical artifacts. However, in the
software space, there is no restriction on the number of dimensions that can be
defi ned and the number of choices that can be made in each dimension. Of course,
time represents a very important dimension which captures the development history
and versioning evolution of systems. The pervasive reuse of software assets has

 Fig. 12.4 Distinct OSM views

C. Atkinson and D. Draheim

267

been studied by SOA governance in the past [28 , 29] and underpins the need for a
systematic treatment of software versioning beyond the frontiers of a single silo
project.

 The dimensions organize the views onto the SUM. The SUM is the core, the
dimensions form the inner shell, and the views form the outer shell. In a transitional
stage of the technology, we eventually envision OSM as an ideal metaphor that tool
integrating platforms should approximate as closely as possible. As fi rst approxima-
tions, implementations can be based on a protocol-based integration of existing
tools as long as the realization strictly targets the maintenance of model consis-
tency; however, the ultimate implementation is a unifying model database, actually
a model data warehouse, and this is also the realization approach of our prototypical
implementation. In the full vision, the defi ned dimensions rule all the views. Today’s
programming languages crosscut the dimension we naturally fi nd in today’s soft-
ware modeling bases so that today’s source code, as a legacy problem, impedes the
pure realization of OSM. We foresee the advent of new programming languages that
are systematically governed by a separation of concerns along the aforementioned
naturally existing dimensions. Until then we can pragmatically realize a substantial
step forward by integrating source code projections into our tool and modeling
approach as is shown in Fig. 12.4 .

12.4.1 Models at Run-Time

 The OSM approach was designed primarily with software development in mind,
with the result that the views and dimensions it supports are primarily focused on
development time concerns. This is also the focus of most tools populating typical
software engineering environments today. However, if we assume that the cloud
will increasingly be used to execute and host software systems, as well as develop
them, it makes sense to simplify the transition from development to run-time. In
fact, ideally, it makes sense to remove the distinction between development and run-
time altogether and simply view the cloud as the host for all parts of a software
system’s life cycle, from birth to cradle.

 Although it sounds simple, this idea has profound consequence if carried through
to its full extent. First, it means that the software engineering views and concerns
become just one among many other sets of views and concerns, related to other
stakeholders such as the owner, administrator, and end user. All these stakeholders
would be supported through the same infrastructure driven by the same underlying
information source. Moreover, the different interfaces used by other stakeholders,
such as end users, would also be considered as different kinds of views. In terms of
SUM-based software engineering, the SUM would become the life cycle spanning
information source for all information related to the system, including its run-time
execution state and real-time attribute values. This would in turn mean that behav-
ioral aspects of the system, including information about all running process
instances, would also need to be stored in the SUM. In a very real sense, therefore,

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

268

the SUM represents the code as well as the trace of the ongoing run-time execution
of the system as it evolves.

 Moreover, the provision of information about the run-time status of the system,
such as that provided by process monitors and debuggers, would essentially corre-
spond to the demand of new types of views, albeit at run-time.

 With the systematic integration of run-time models into a unifi ed framework, we
would truly arrive at cloud-empowered software engineering life cycle manage-
ment. The software engineering life cycle is more than software development in that
it also encompasses software operation. Much more is said about this in Sect. 12.5
on life cycle and stakeholder awareness, where we broaden the discussion even
beyond technological issues in the direction of social issues. Software operation has
always been the poor cousin of software engineering approaches and research
although the tight dependency of software development and operation was already
clear at NATO conferences [4] which regarded operation as an integral part of the
software life cycle. Nevertheless, important aspects of software operation like avail-
ability management and capacity management have been regarded as part of IT
service management as represented by the ITIL (IT Infrastructure Library) [30] and
ISO20000 [31] community. Now is the time to systematically integrate operations
as a subject of investigation into software engineering.

12.4.2 On the Realization of the SUM

 The notion of the SUM expresses our two main convictions on future software engi-
neering tools, that is, a focus shift onto abstract syntax of artifact descriptions and
the conceptualizing power of a hub-and-spoke architecture for artifact descriptions.
Particularly, the latter might raise questions on how and whether the SUM can be
actually realized and implemented. In fact, the notion of the SUM has existed for
some time in proven but proprietary technology stacks, albeit in an implicit form.
We characterize a SUM as a systematically extensible, conceptual deep standardiza-
tion of a domain. For instructive purposes, we distinguish between two facets of the
SUM, that is, the so-called normalizing SUM on the one hand and streamlining
SUM on the other. The normalizing facet of the SUM addresses the aspects of con-
ceptualization, domain specifi cness, and deep standardization, whereas the stream-
lining SUM addresses systematic extensibility.

12.4.2.1 The Normalizing SUM

 The normalizing SUM aims at capturing, at a particular point in time, the body of
knowledge in a domain of application development. It then realizes this body of
knowledge as a database against which tools operate as views. We emphasize the
domain specifi cness in order to make clear that not each domain of application
development is amenable to be supported by a SUM. However, for the time being,

C. Atkinson and D. Draheim

269

we are only interested in the domain of enterprise application development and
sub- domains of it, for example, the domain of workfl ow-intensive information
systems.

12.4.2.2 Deep Standardization

 The SUM captures the state of the art of the domain of application development.
The SUM can be considered the outcome of a standardization process. We coin the
term deep standardization for such an effort to distinguish it from the rather shallow
standards that usually emerge in the area of software development. A shallow stan-
dardization addresses the artifact of one tier or one component in the many possible
multi-tier complex application architectures of today’s software applications, for
example, HTML5, CSS3, Java, and XML. A deep standardization might fi x a whole
standard architecture for a domain or might even fi x the artifacts for all the tiers and
components of such a standard architecture. An even deeper standardization might
also fi x the development processes and development tools for the indicated domain.

 The fact that the typical standards in the software engineering world represent
rather shallow standardization efforts by no means means that we have not seen
mature and working standardization efforts in this fi eld. Deep standardization
examples do exist, but they are usually proprietary and are rarely referred to as stan-
dardization efforts. A good example, which is very close to our current CASE tool
discussion, is the former SAP platform. From the beginning, the SAP platform
defi ned an environment for the development, distribution, and operation of ERP
(enterprise resource planning) applications. The SAP platform defi ned an integrated
development environment with ABAP-4 encompassing a domain-specifi c 4GL pro-
gramming language but much more. It also defi ned system architectures consisting
of dedicated development, testing, and operating systems and provided the neces-
sary deployment mechanisms (i.e., the so-called transport system) to orchestrate the
code. Furthermore, it provided a worldwide application monitoring and customer
feedback system. As this example shows, it is possible to integrate all necessary
ingredients for successful application development in one domain at one point in
time into a single platform. Of course, from time to time it becomes necessary to
review whether such a platform still offers support for the necessary features,
because the environment is always evolving. For example, the SAP platform needed
total refactoring when the Internet boomed and brought in new requirements driven
by the B2C hype.

 Another example of deep standardization in the fi eld of ERP system develop-
ment, but with other emphases, is the AS400 midrange computer technology stack
[32]. This provides a solid platform for the development and operation of ERP
systems based on a well-integrated architecture encompassing the fully integrated
operating and database system OS400/DB2, a virtual machine tier TIMI (technology-
independent machine interface), and the 4GL programming language RPG (Report
Generator). All the rapid development technologies, ranging from the database-
related RAD (rapid development) tools of the 1980s through object-oriented, visual

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

270

integrated development environments to today’s elaborate Web application
frameworks and tool sets, show that the concept of deep standardization and the
realization of such deep standardizations is a working concept. The same is true for
the early transaction monitors and workfl ow management systems as well as today’s
business process management suites.

 We believe that the software engineering fi eld needs to show more systematic
efforts in deep standardization in the future. In other engineering fi elds, there are
many mature deep standardization examples. For example, in the fi eld of hardware
manufacturing, numerous working standards span several tiers of abstraction (e.g.,
VHDL at the register-transfer level and SPICE at the gate level) in such a way that
they can be supported by powerful development and simulation tools as well as
production processes. In the fi eld of construction works, the so-called Eurocodes
[33] provide a full range of working standards for the structural design of different
kinds of structures.

 We believe that the SUM concept is very promising for the fi eld of enterprise
applications. This belief is reinforced by the existence of a huge body of knowledge
for this domain in the form of workfl ow-intensive information systems [34 – 36].

12.4.2.3 Orientation Toward Abstract Syntax

 An instance of the SUM embodies a deep standardization of a domain. It does so by
implementing the domain knowledge as a database that realizes the abstract syntax
of all the artifacts needed to describe applications in the application domain. All the
artifacts that describe the various aspects of an application together form one com-
posite artifact in our paradigm. We associate artifacts with system description and
system descriptions with models. In orthographic modeling, each description of an
aspect of a system is considered a model, including source code, which is nothing
but a description of system behavior with a completely defi ned operational seman-
tics. The various models that together describe an application form a composite
model, and the several aspects they model form the dimension of the SUM. A soft-
ware developer gains access to the information via appropriate tools which can be
regarded as editable views.

 The purpose of these updatable views is to establish the concrete syntax for the
various dimensions of the SUM. It is possible to have different views realizing dif-
ferent concrete syntaxes for the same dimension. For example, one could have a
visual class diagram view that presents the class structure of the application in the
form of a typical UML class diagram and a view that presents the class structure
textually, for example, as stubs in partial Java pseudo. The updatable views shield
the SUM from issues related to the concrete syntaxes involved. The human- computer
interaction of a view can be designed in such a way that it gives the user the impres-
sion of being tightly connected to the SUM, or it could be designed in more conven-
tional way so that a concrete compilation step is executed on the command of the
user. The fi rst option resembles a strictly syntax-directed client that allows the user
to construct only syntactically correct models. Editors for such views resemble

C. Atkinson and D. Draheim

271

syntax- directed programming language editors. It is also possible to realize a generic,
unifi ed, syntax-directed browser and editor for all possible dimensions of the SUM.
An example of such a unifi ed, integrated source code model [46], called AP1, has
been developed at the University of Auckland [37].

12.4.2.4 The Streamlining SUM

 An obvious counterargument against the notion of a SUM is that “one size does not
fi t all.” It is based on the practice in today’s projects that developers want to select
the best tool for each representational artifact and assemble a heterogeneous tool
suite from third-party products. However, fi rst, we believe that the SUM vision is
realistic given the many existing examples of deep standardizing technologies and,
second, that the advantages of the SUM (i.e., redundancy freeness and normaliza-
tion) more than compensate for these potential disadvantages. Artifact versioning is
a very instructive example of this principle. It is common in today’s projects to have
an inbuilt versioning feature in each of the tools within a tool suite. When this is the
case, it is necessary to develop guidelines for how to use these features to trace
version across the different tools. In practice, today’s tools offer auxiliary interfaces
to the standard versioning systems. In our approach, versioning would only be
addressed in one place as a dimension of the application domain’s SUM.

 The “one size does not fi t all” argument is partially valid, but more in the form of
the “no one can foresee everything” argument. The normalizing SUM captures the
notion of deep standardization. We call a SUM that is not extensible a strictly
normalizing SUM. If we add a view to a strictly normalizing SUM, this view only
provides a new concrete syntax for a dimension of the SUM. However, we do not
forbid the extension of a SUM, because we want to stay fl exible with respect to the
unforeseeable new requirements. Therefore, we want to consider the normalizing
SUM as the outcome of an initial standardization that forms the starting point for an
ongoing standardization process that we call the streamlining SUM. The streamlin-
ing SUM evolves through the continuous addition of new views. However, these
new views should be added in a systematic and disciplined way. As in the process
of building the normalizing SUM, avoidance of redundancy must be the most
important guideline in this process.

 In the streamlining SUM approach, a new view not only adds new concrete syntax
to the domain but also new information to the SUM. We believe that there is the
need for extra mechanisms to streamline the extension of the SUM by new views
such as the maintenance of meta-information and a moderation process. The meta-
information should describe the purpose of each information snippet in the SUM
and its relation to the existing information in the SUM so that it is possible to under-
stand whether a feature that a tool vendor wants to introduce is really new and
needed. It is the purpose of the moderation process to reject views that would intro-
duce redundant or otherwise useless features. The design of the meta-information
and the moderation process is beyond the scope of this chapter.

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

272

12.5 Life Cycle and Stakeholder Awareness

 The concentration and integration of all software, system state, project state,
and user information into a single SUM hosted on the cloud provides a unique
opportunity to signifi cantly improve software projects performed by large, hetero-
geneous, distributed teams. However, enhanced support for software projects must
be coupled with improved management techniques in order for this to be successful.
Initiatives in cloud-based software engineering will not take off unless they
systematically address management issues. The challenge is twofold – it is not only
necessary to address the problems of group dynamics in the customer-encompassing
project team but also cultural change management within the customer’s enterprise.
We believe that this needs to be addressed by adherence to two fundamental
principles:

• Artifact and project management integration. The IT support for process issues
needs to be unifi ed with IT support for artifact creation and management.

• Focus shift toward management. Management issues need to be brought to the
fore by explicitly integrating a project design stage into the software engineering
life cycle.

12.5.1 The Viable Software Engineering Life Cycle

 So far, we have discussed the artifact-related aspects of cloud-aided software
engineering, but it is also important to address the process and management-
related aspects as well. These cannot be defi ned merely in terms of the interplay
of activities – management issues have to be treated as first-class citizens so
that they can be supported explicitly and in a fl exible manner. This is particularly
important for large projects which have a signifi cant impact on the business process
landscape of enterprises [13]. Large projects therefore need to be subject to IT
strategy and business alignment and, in extreme cases, need to be treated as part of
corporate reengineering. In short, large projects need organization [38].

 Since software development has been considered in a systematic way, there has
always been a focus on the process nature of the software engineering life cycle. But
it is not enough to approach the software development challenge merely in terms of
a defi ned interplay of activities. This is because successful software development is
about management. As always with management, the management of software
development involves planning, organization, coordination, and control of people.
In traditional software processes, there are many different, ad hoc strategies for
addressing management issues. For example, the surgeon team approach [25] by
Frederick Brooks discusses an organizational pattern, while the best practices agile
programming [39] embodies important human relationship-oriented management
principles such as pair programming, 40 h/week, and “customer on the team.”
As another example, the Rational Unifi ed Process [40] embodies organizational

C. Atkinson and D. Draheim

273

knowledge in the defi nition of roles. The problem with existing software processes
is that management issues are not fi rst-class citizens. They are approached implicitly
and therefore in a non-fl exible manner, that is, each process provides ad hoc solutions
to an arbitrary combination of management problems.

 Figure 12.5 reconsiders the software engineering life cycle in the context of a
typical concrete project. Large projects are often regarded as consisting of two

 Fig. 12.5 The software engineering life cycle reconsidered

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

274

major phases addressing system construction and rollout (i.e., deployment and
training of users). The operation phase of a software system is often only considered
after the development project has fi nished. Note that this is not a software process,
per se, but takes a high-level, steering-oriented perspective of the project’s life cycle.
The following arguments therefore hold for most software processes (methods)
used today.

 Figure 12.5 also shows how a typical project actually is experienced. The fi rst
problems are manifest when the system construction task needs more time than
initially planned. By the time system rollout is meant to start, problems are manifest
by the project “running hot.” Users complain that the system complicates their work
instead of supporting it, that it violates data privacy regulations, and so on; project
managers complain about the incompetence of the chief project manager; and
the chief project manager complains about infl exibility in the development team,
resistance from the users, and lack of IT strategy. The project runs into crisis and
a project retrospective becomes necessary. To get “everybody on board” again,
responsibilities must be clarifi ed and settled, troublemakers must be identifi ed and
remotivated or excluded, fears must be understood, and users must be reconvinced.
After a successful project retrospective, a next, initially unplanned round of system
construction and rollout can be started. If all goes well, the system can eventually
start operations with a substantial cost and time overrun and partially fulfi ll initial
expectations.

 Formally, this is called “storming ” in group dynamics research [41] and “unfreez-
ing ” in organizational change research [42]. Storming means that team members try
to fi nd and settle their roles, which often means that they want to maximize their
infl uence. Unfreezing occurs when people become aware for the necessity for
change. People resist change because they are afraid of deterioration, power shifts,
and disorientation. Therefore, change costs energy. A crucial part of this energy is
needed for unfreezing. Unfortunately, problems in group dynamics and in cultural
change mutually reinforce each other. Troublemakers in the team typically encour-
age troublemakers in the target user group and vice versa.

 A viable software engineering life cycle proactively manages storming and
unfreezing. Therefore, it explicitly incorporates a project design phase as a fi rst step
as depicted by the last project life cycle in Fig. 12.5 . The explicit project design
phase replaces the project retrospective experienced in projects that run into crisis.
The extra efforts put into project design minimize risks and eventually save costs
and time. The purpose of project design is to identify and address potential resis-
tance in the team and the enterprise as early as possible. The concrete task of the
project design phase is to achieve full commitment of the stakeholders in the proj-
ect, in particular, of the project managers, and to organize suffi cient and appropriate
resources for the chief project manager. For example, a team of appropriate experts,
a kind of clearing house, could help the chief project manager deal with group
dynamics and cultural change.

 The essence of the viable software engineering life cycle is also evident in the
types and forms of requirement elicitation efforts needed. In small projects, require-
ment elicitation aims at grasping and understanding the future system features at the

C. Atkinson and D. Draheim

275

level of work-organization and human-computer interaction. However, in the early
stages of the project, highly complex and creative problems must be resolved. It is
fair to say that high-end engineering tasks must be fulfi lled. Note that Hammer and
Champy [43] use the word corporate engineering for restructuring an organization.
Of all the activities that might be still viewed as requirement elicitation from the
perspective of a software engineering project, the design of a system landscape is
one of the most trivial (refer to Fig. 12.5).

12.5.2 Viable Software Life Cycle Instruments

 Today’s software processes address management of large teams with respect to
division of labor. The fi elds that are addressed are the classical fi elds of manage-
ment and project management, that is, organization of the team, coordination of the
work forces, and control of the outcome. Important phenomena of really large soft-
ware introductions are often not considered in today’s projects, and these are the
problems of true leadership as opposed to mere management, that is, problems of
group dynamics and cultural change management.

 A viable software life cycle is aware of group dynamics in the development team
and the cultural change that is catalyzed by the introduction of the new application.
Where the awareness of group dynamics and cultural change is a step forward, it
does not yet answer how to actually address the discussed problems. Here are a few
instruments that can help to enable a viable software life cycle:

• Explicit project design
• Meta project handbook

 – Project type identifi cation
 – Troublemaker identifi cation
 – Diligent project organization

• Systematic stakeholder incorporation

 – Steering committee
 – Employees’ committee
 – Project clearing house
 – Builders’ hut

• Cultural change management
• Anticipation of software operations

 The explicit project design phase that we have motivated in Sect. 12.5.1 is a
direct consequence of the demand for dealing explicitly with group dynamics and
cultural change. First, it is important to identify the type of project in terms of these
challenges. For this purpose, question like the following should be posed: Is the
project a strategic project that has the target to change crucial parts of the business
processes or the organizational structure, that is, is it a part of or does it drive

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

276

business reengineering efforts [43]? Is the project an even more strategic project
that has the target to change the organizational culture? Is the project perceived as
such a strategic project, even if it has not been explicitly stated that it is? Will the
project impact the way people work so substantially that systematic training efforts
are needed?

 It is also important to proactively identify possible sources of troubles, in par-
ticular, in the involved development teams. Based on these questions, the project’s
organizational structure should be designed with diligence. The correct persons
should be assigned to correct tasks. Possible problems should be addressed from the
outset, and systematically, appropriate funds and people should be made available
to address them.

 Diligence in project organization also requires software operation to be antici-
pated. An important issue is to proactively bridge the gap between different soft-
ware development processes established in the various heterogeneous teams
involved. If a company is under time pressure, it usually cannot normalize the pro-
cesses and development approaches of all teams in every project since the processes
involved may range from ad hoc through agile to heavyweight. The least that can be
done is to make all project guidelines from all the teams available to all project lead-
ers to motivate them to invest some time in understanding each other’s working
practices. Another basic step is to create common language in the form of a meta-
glossary for the most important issues in the company.

 Similarly, if one cannot steer the working processes in the distributed teams, it is
at least necessary to strictly defi ne the interfaces of the teams and the interplay
between the teams by a meta-project handbook.

12.5.3 Viable Software Products

 A viable software product is a software product that embodies cultural change. If a
system is developed for an enterprise, it evolves. Some changes become necessary,
because the functionality of the system does not fulfi ll the requirement specifi ca-
tion. Other changes become necessary, because the users want to have some minor
dialogues to be improved. But there are also those changes that crucially extend
the functionality of the system or embody major changes of existing functionality.
Each major release in an enterprise represents a maturity level with respect to the
supported business processes.

 We believe that large software products should also support several releases,
each representing a maturity level (refer to Fig. 12.6). Introducing a full-fl edged
product that contains the features that evolved in the product over all the years of its
product life cycle might be too heavyweight, simply too feature rich and sophisti-
cated, to be introduced at once in an enterprise. The cultural change caused by the
introduction of a large software product should be handled in a step-by-step way
and should be realized using a predefi ned software version road map.

C. Atkinson and D. Draheim

277

 A viable software product can be regarded as a systematically evolving software
product. The notion of viable software product perfectly fi ts to and can be unifi ed
with the notion of software product-line engineering [26], which is depicted by the
lower branch in Fig. 12.6 .

 A viable software product is designed to drive organizational change. Take an
integrated IT service management software platform [9] as an example. It is known
that the processes of IT service management, that is, such as documented by, for
example, ISO20000 and ITIL, should be introduced one after the other. Usually, you
start with the formalization of incident management, and then you continue with the
formalization of problem management before you proceed with other processes
from service delivery management, service control, and so on. Figure 12.7 proposes
several stages in the IT service management of a viable software product. The sev-
eral major releases are based on the maturity levels of the CMMI (Capability
Maturity Model Integrated) [44] and are specifi ed as sets of ISO 20000 processes.
For example, a fi rst version of an IT service management should only provide a
targeted support for incident management. The point is that support for incident
management can be tailored and simplifi ed if there is no context of surrounding
features for other processes. This means that it is simply not appropriate to use a
tool with full support for ISO 20000 (i.e., across all of its processes) for the purpose

 Fig. 12.6 A viable software product

 Fig. 12.7 A viable IT service management ERP system

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

278

of incident management only, because in a full-fl edged ISO 20000 tool, the incident
management process is intertwined with many other processes and cluttered with
forms and reports concerning those other processes.

12.6 Conclusion

 Software engineering provides us with a wide range of proven methods and tools for
the development of software in large teams. However, in software projects with
heterogeneous, distributed teams, we are still challenged with time and cost over-
runs or even failure. From a technological viewpoint (i.e., considered as an approach
to combine latest network and virtualization technologies), cloud computing is here
to stay. Cloud computing is thus a natural candidate to boost tomorrow’s distributed
software projects. Unfortunately, it is not suffi cient to migrate current software
engineering tool suites into the cloud and to work with them as usual to exploit
the potential of cloud-based software engineering. This chapter aims at identifying
the key success factors for cloud-based software engineering. On the one hand, we
explained the need for deep, domain-specifi c standardizations of application archi-
tectures and life cycles as well as the need to integrate them from scratch to robustly
designed tool landscapes. On the other hand, we explained the need for a focus shift
onto group dynamics and cultural change management in very large software engi-
neering projects and, simultaneously, the integration of appropriate project manage-
ment tools into the respective tool landscape. We have discussed the following key
observations and concepts:

• Software in the cloud cannot be copied ! We have explained how this will deeply
impact and boost the software industry.

• The single underlying sum (SUM) as the essence of next-generation integrated
development environments.

• Deep standardization as the normalizing aspect of the SUM.
• The streamlining SUM as the aspect of systematic extension of the SUM, real-

ized by, for example, maintenance of meta-information and a defi ned moderation
process.

• Orthographic software modeling as an enabler for next-generation cloud-aided
software engineering.

• CASE 2 . 0 – Cloud - Aided Software Engineering as the integration of next-
generation view-based technologies and a focus shift toward management best
practices.

• The viable software engineering life cycle that closes the gap between project
management, organizational change management, and corporate governance.

• The viable software product as a product that embodies and drives organizational
change.

 In the 1980s, Computer-Aided Software Engineering (CASE) drove a major
revolution in the way software systems were developed and maintained. We have

C. Atkinson and D. Draheim

279

made the case for how Cloud-Aided Software Engineering (CASE 2.0) promises to
spawn a new revolution that will extend these benefi ts to the full software life cycle
and encompass all concerns related to the engineering and running of viable soft-
ware systems. The “2.0” emphasizes the fact that this will include group dynamics
and advanced management concerns involving all stakeholders (from owners
and end users to developers, managers, and administrators) not just the traditional
development and maintenance concerns of software engineers and project managers.
We have explained how the key to unlocking the power of the cloud for software
engineering is to adopt a strict, fully-fl edged view-based approach to visualization
and have presented some innovative strategies for supporting views in a cloud-based
environment.

 In the future, low-level technology issues related to hardware platforms and
software infrastructures will become less important for Software-as-a-Service
stakeholders, as more of the responsibility for providing a reliable and robust
Platform-as-a-Service is assumed by cloud providers. Moreover, the integration of
new functionality into such platforms will be more generalized and standardized
than it is today and will become more data oriented than message oriented. Software
engineering environments will also merge with enterprise architecture environ-
ments [45] which provide related information about all aspects of how software
applications are integrated into, and aligned with, an enterprise IT landscape. By
consolidating all artifacts and concerns related to a software application, across its
full life cycle, the cloud makes every work package, historical version, product-line
version, and deployment instance, etc., dynamically visualizable on demand. In
other words, all stakeholders will experience a software application through a web
of real-time views.

 References

 1. Buyya, R., Yeo, C.S., Venugopal, S., Borberg, J., Brandic, I.: Cloud computing and emerging
IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener.
Comput. Syst. 25 , 599–616 (2009)

 2. Mell, P., Grance, T.: The NIST Defi nition of Cloud Computing, version 15. National Institute
of Standards and Technology, Information Technology Laboratory (2009)

 3. Stiglitz, E.: The Roaring Nineties: A New History of the World’s Most Prosperous Decade.
W.W. Norton, New York (2003)

 4. Naur, P., Randell, B. (eds.): Software Engineering ~ Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, October 1968. NATO Science Committee, January
1969

 5. Project Management Institute: PMBOK Guide – A Guide to the Project Management Body of
Knowledge, 4th edn. Project Management Institute, Newtown Square (2008)

 6. Drakos, N.: Magic Quadrant for Team Collaboration and Social Software. Gartner RAS Core
Research Note G00151493. Gartner, October 2007

 7. Carr, N.G.: IT doesn’t matter. Harv. Bus. Rev. 81 (5), 5–12 (2003)
 8. Carr, N.: The Big Switch – Rewiring the World, from Edison to Google. W.W. Norton &

Company, New York (2008)

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

280

 9. Draheim, D.: Smart business process management. In: Fischer L. (ed.) 2011 BPM and
Workfl ow Handbook, Digital Edition. Future Strategies, Workfl ow Management Coalition,
February 2012

 10. Westerman, P.: Data Warehousing – Using the Wal-Mart Model. Morgan Kaufmann Publishers,
San Francisco (2001)

 11. Hahn, B., Ballinger, C.: Tpump in Continuous Environment – Assembling the Teradata Active
Data Warehouse Series. Active Data Warehouse Center of Expertise, April 2001

 12. Browne, J., Harhen, J., Shivnan, J.: Production Management Systems. Addison-Wesley,
Boston (1996)

 13. Draheim, D.: Business Process Technology – A Unifi ed View on Business Processes,
Workfl ows and Enterprise Applications. Springer, Berlin (2010)

 14. Mintzberg, H.: Mintzberg on Management – Inside Our Strange World of Organizations. The
Free Press, New York (1989)

 15. Stallman, R.M.: Free Software, Free Society. Free Software Foundation, Boston (2010)
 16. Gelder, K.: Subcultures: Cultural Histories and Social Practice. Routledge, New York (2007)
 17. Levy, S.: Hackers: Heroes of the Computer Revolution. Penguin, New York (1984)
 18. Castells, M.: The Internet Galaxy: Refl ections on the Internet, Business, and Society. Oxford

University Press, Oxford (2001)
 19. Strangelove, M.: The Empire of Mind: Digital Piracy and the Anti-Capitalist Movement.

University of Toronto Press, Toronto (2005)
 20. Raymond, E.S.: The Cathedral and the Bazar. O’Reilly & Associates, Sebastopol (1999)
 21. Weiser, M.: The computer for the 21st century. Sci. Am. 265 (3), 66–75 (1991)
 22. Drakos, N., Mann, J., Rozwell, C.: Magic Quadrant for Social Software in the Workplace.

Gartner RAS Core Research Note G00207256. Gartner, October 2010
 23. Hollingworth, D.: The Workfl ow Reference Model. Technical Report TC00-1003, Workfl ow

Management Coalition, Lighthouse Point, FL, USA (1995)
 24. International Organization for Standardization: International Standard ISO/IEC 19770–1:2006.

Information Technology – Software Asset Management – Part 1. ISO (2006)
 25. Brooks, F.P.: The Mythical Man-Month – Essays on Software Engineering. Addison-Wesley,

Reading (1975)
 26. Atkinson, C.: Component-Based Product Line Engineering with UML. Addison-Wesley, New

York (2002)
 27. Atkinson, C., Stoll, D., Tunjic, C.: Orthographic service modeling. In: Second International

Workshop on Models and Model-driven Methods for Service Engineering, pp. 67–70. IEEE
Computer Society (2011)

 28. Holley, K., Palistrant, J., Graham, S.: Effective SOA Governance. IBM White Paper, IBM
Corporation, March 2006

 29. Draheim, D.: The service-oriented metaphor deciphered. In: Lee I., Park J.C., Song I. (eds.)
Journal of Computing Science and Engineering, vol. 4, no. 4. KIISE, December 2010

 30. Cartlidge, A., Lillycrop, M. (eds.): An Introductory Overview of ITIL V3. ISBN 0-9551245-
8-1. The IT Service Management Forum (2007)

 31. International Organization for Standardization: International Standard ISO/IEC 20000–
1:2005(E). Information Technology – Service Management – Part 1: Specifi cation. ISO (2005)

 32. Soltis, F.: Fortress Rochester. The Inside Story of the IBM I series. 29th Street Press, July 2001
 33. European Committee for Standardisation: Eurocode – Basis of Structural Design, EN

1990:2002 E, CEN, November 2001
 34. Dadam, P., Reichert, M., Rinderle-Ma, S., Lanz, A., Pryss, R., Predeschly, M., Kolb, J., Ly,

L.T., Jurisch, M., Kreher, U., Göser, K.: From ADEPT to AristaFlow BPM Suite: a research
vision has become reality. In: Business Process Management Workshops 2009, Lecture Notes
in Business, Informatics, pp. 529–531. Springer (2009)

 35. Dadam, P., Reichert, M.: The ADEPT project: A decade of research and development for
robust and fl exible process support. Comput. Sci. Res. Dev. 23 (2), 81–97, Springer (2009)

C. Atkinson and D. Draheim

281

 36. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information
Systems – Bridging People and Software Through Process Technology. Wiley, New York
(2005)

 37. Lutteroth, C.: AP1 – A platform for model-based software engineering. Ph.D. thesis, University
of Auckland (2008)

 38. Gillette, W.: Managing megaprojects: A focused approach. In: Software, vol. 13, no. 4. IEEE
(1996)

 39. Beck, K.: Extreme Programming Explained ~ Embrace Change. Addison-Wesley, Reading
(2000)

 40. Kruchten, P.: The Rational Unifi ed Process. Addison-Wesley, Reading (1999)
 41. Lewin, K.: Resolving Social Confl icts: Selected Papers on Group Dynamics. Harper & Row,

New York (1948)
 42. Schein, E.H.: Organizational Culture and Leadership. Wiley, San Francisco (2004)
 43. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Business

Revolution. HarperCollins Publishers, New York (1993)
 44. CMMI Product Team: CMMI for Development, version 1.3. Technical Report CMU/SEI-

2010-TR-033. Carnegie-Mellon-University, Software Engineering Institute, November 2010
 45. Lankhorst, M.: Enterprise Architecture at Work. Springer, Berlin/Heidelberg (2009)
 46. Draheim, D., Weber, G.: Form-Oriented Analysis – A New Methodology to Model Form-

Based Applications. Springer, Berlin (2005)

12 Cloud-Aided Software Engineering: Evolving Viable Software Systems…

283Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_13, © Springer-Verlag London 2013

 Abstract Development of cloud applications must consider many aspects inherent
in the distributed nature of clouds, mainly those related to elasticity, high access
level to computational resources, multi-tenant behavior, transparency, pay-per-use
model, and resource scalability. In addition, portability is a key feature that must
be present in any development framework to allow extensions and simplify resource
sharing by standardized interfaces. Open source approaches can be used, but
the model must be composed of independent parts to optimize the availability of
active components in the infrastructure. Hybrid cloud models are interesting because
widely acceptable solutions can be developed without “reinventing the wheel.”
Private clouds are more suitable for keeping restricted data or supporting services of
small enterprises or institutions. However, their infrastructure must offer alterna-
tives to provide services outside their own domain. In this context, a private cloud
can use frameworks of public clouds and aggregate services to support the develop-
ment of new applications. This generally occurs in PaaS models, where the platform
offers pre-confi gured tools to interact with services of other domains. Security
issues must also be considered at all stages of development, as most of the commu-
nication takes place among services located in different domains, linked by Internet
connections. Solutions such as OpenID guarantee that public cloud services are
used for the purpose of authentication, but additional security features in the source
domain must be assured. In this chapter, a development framework is presented to
guide the development of widely acceptable cloud applications, following standard-
ized open source solutions. This framework, originally developed for a robotic envi-
ronment, can be extended to support other cloud environments. The study presents

 Chapter 13
 Development of Cloud Applications in Hybrid
Clouds with Support for Multi-scheduling

 Lucio Agostinho Rocha

 L. A. Rocha (*)
 Department of Computer Engineering and Industrial Automation (DCA)
at the School of Electrical and Computer Engineering (FEEC),
State University of Campinas , São Paulo , Brazil
 e-mail: l089278@dac.unicamp.br

284

aspects related to multi-scheduling of virtual machines and suggests how virtualized
applications can be developed with different methodologies, such as dynamic IP ,
Web service with SOAP communication, MapReduce approach, and OCCI - based
infrastructure.

 Keywords Cloud computing • Hybrid cloud • OCCI • OpenID • Cloud framework •
 MapReduce • Virtualization

13.1 Introduction

 The development of distributed cloud architectures deals with issues of scalability,
elasticity over demand, broad network access, usage measurement, security aspects
such as authorization and authentication, and many other concepts related to multi-
tenant services in order to serve a high number of concurrent users over the Internet.
The nature of a distributed cloud has implications about how the offered services are
organized over different administrative domains. In order to extend the Service-
Level Agreement (SLA) to thousands of users, the support architecture must have
interfaces compatible with other cloud providers.

 This work presents a cloud framework directed to the requirements of portability,
respecting the Open Grid Forum (OGF) and Open Cloud Computing Interface
(OCCI) patterns [1]. The framework has kernel components that guide the extension
of the whole system. Also contemplated are the methodology, architecture, and
wrapper of open source APIs , such as OpenID [2], to allow aggregation of other
cloud services to the system. We discuss how other cloud technologies model their
own structures. Our goal is to illustrate mechanisms to integrate private and public
clouds in a hybrid model.

 The above-mentioned concepts have been used to develop a real cloud laboratory
offering different Linux operating systems as services. Unlike Amazon EC2 [3] or
Windows Azure [4] cloud environments, in this cloud architecture, Linux systems
can be used to interact with robotic resources accessible only inside the laboratory.
In addition, this architecture allows the inclusion by the user of compatible virtual
machines into the system. This system is unique in that it deals with network issues
only during the period reserved for robotic experiments. The framework also
supports multiple scheduling approaches, that is, multi-scheduling.

 This framework was designed according to the Layered Design Pattern, a well-
defi ned standard where lower levels provide services to higher ones. Each level is
defi ned in such a way as to allow development independently from the others,
according to interfaces compatible with open patterns such as OCCI .

 SSL and X.509 digital certifi cates guarantee the security of Internet access from
outside the institution. The main goal of this security infrastructure is to reduce the
effort required to keep the system reliable in different physical infrastructures.
Scientifi c applications can benefi t from this approach: For example, grid computing
middleware such as Globus Toolkit [5] can be virtualized in VMs of the infrastructure,

L.A. Rocha

285

reducing the complexity of developing secure intensive computational facilities for
massive amounts of data. In robotics, virtualization in cloud is an alternative to keep
collaborations between students and to promote robust integration of geographically
distant robotic resources.

13.2 Framework for Distributed Cloud Applications

 Distributed frameworks must offer sensible SLA and provide high-quality services
to concurrent users. In this section, we describe an approach in robotics to develop
frameworks associated with scheduling techniques of virtual resources in the design
of cloud infrastructures. Extended versions of this work were reported in [6] and [7].

 Networked robotics is a trend that favors the distribution of robotic applications
across a set of processors located inside and outside robots. The motivation for net-
worked robotics is the availability of network technologies allowing robots to take
part in comprehensive networking environments aggregating processors, environ-
mental sensors, mobile and stationary robots, and wireless gadgets, among other
networked devices. Many software platforms have been proposed to simplify the
development of networked robotic applications, offering a set of services to the
applications such as access control, federated authentication, and resource protec-
tion. REALcloud is one such cloud platform for networked robotics. Its architecture
has four main software packages, as shown in Fig. 13.1 .

 The embedded package consists of HTTP microservers capable of running on
robots’ onboard processors with limited processing power. Microservers have an
HTTP (Hypertext Transfer Protocol) interface aggregating basic robot operations
(move, turn, sense, etc.). The Protocol Handler package intercepts all HTTP requests
targeted to the robots and performs functions such as security checks, HTTP proxy-
ing, and network address translations. The front-end package offers APIs
(Application Programming Interfaces) and Web components for manipulating the
robots. APIs are supplied in several programming languages, such as C++, Java,
Python, C#, Matlab, and LabView. The management package offers a wide range of
services related to users, resources, domains, and federations. An important service
is the access service where authenticated users start an access session for the
resources they previously reserved.

 Fig. 13.1 Main packages of the REALcloud platform

13 Development of Cloud Applications in Hybrid Clouds with Support…

286

 REALcloud is entirely based on Web technologies. As such, management
services and robots are accessed via HTTP . The REALcloud platform has been
used primarily in Web labs over the public Internet. In such environments the user
develops robotic applications in his/her own computer to control robots over the
network. Security is provided by the management and Protocol Handler packages.
Although the platform performs adequately for applications requiring small data
transferring and processing rates (e.g., sonar-based autonomous navigation), bottle-
necks may degrade applications requiring effi cient communication and high
processing power. Slow Internet connections and HTTP inspections introduce a
delay in the control that impairs performance of distributed robotic applications.
The processing power of the user’s computer also causes delays in control, mainly
when control actions are computed via CPU intensive algorithms such as those
based on computer vision and computational intelligence techniques.

 In order to avoid the delays introduced by slow Internet connections and by
limitations of the user’s computer, an environment has been developed where user’s
applications run on servers directly connected to the resources manipulated by the
application. The servers can provide resource sharing with much more computer
power than the user’s processor. Virtualization is the key technology for achieving
the desired performance. In addition, applications can take advantage of specialized
hardware installed on the servers such as GPUs (Graphics Processing Units) and
FPGA (Field-Programmable Gate Array) specialized boards (e.g., for stereo vision
processing).

 In the case of the networked robotic platform, virtualization helps bringing appli-
cations closer to the robots they operate, avoiding long network delays and provid-
ing the processing power required by applications. A user can own his/her own VMs
with the proper operating system plus the network robotic software necessary for
developing and running the applications. This software includes the client side of
REALcloud platform, robotic frameworks, APIs , and simulators. Isolation assures
that applications running on different VMs do not interfere with each other. This
solution requires one or more servers installed in the robotics lab, an inexpensive
resource nowadays.

 In order to take advantage of virtualization, an architecture must be designed to
offer a virtualized environment where the distributed robotic applications will run.
In this architecture, resource protection issues must be addressed in order to prevent
unauthorized access to robots and other devices by the applications running on
VMs. Processor allocation and VM networking sharing are important to assure an
adequate distribution of processing power to applications. REALcloud offers the
cloud platform as a service in a private (and small) cloud computing infrastructure.
Both the client and server sides of the platform are deployed inside VMs. At the
server side (management and Protocol Handler packages of Fig. 13.1), virtualiza-
tion favors software distribution to the members of a federation as all the platform
software comes installed and confi gured in a VM image compatible with a chosen
virtualization solution. Each federated domain must deploy instances of this VM to
manage and protect the robotic resources.

L.A. Rocha

287

 At the client side, user’s applications running inside VMs access the robotic
resources with low communication latency and appropriate computing power. The
processors where the VMs run and the robotic resources are connected to the same
network or to networks a few hops apart. In order to speed up the interaction with
robotic resources, applications running inside VMs access the robotic resources
without HTTP inspection by the Protocol Handler package.

 The REALcloud environment is built around two Web services (Fig. 13.2): VM
 management service that allows users and administrators to manage VMs and
 session validation service that allows applications running on VMs to access the
robotic resources.

 The VM management service controls the VM’s life cycle. It allows confi guring,
initiating, reconfi guring, stopping, and destroying VMs. This service relies on com-
mand line interfaces supported by the chosen virtualization solution. Once a VM is
created, the service confi gures the VM host’s fi rewall in order to allow access to the
VM from outside networks. Access is provided by the NAT (network address trans-
lation) and the port forwarding network functions. The session validation service is
responsible for assigning privileges to the VMs belonging to users holding valid
access sessions. It gives the same protection as provided by the Protocol Handler
package (still necessary for accessing resources from the outside networks).

Cloud
Front-end

Session
Validation

Firewall

Virtualizer

Multi-
Scheduler

REALcloud core package

Robotic core environment

VM
Management

Protocol
Handler

Embedded

Management

Front-end

 Fig. 13.2 Architecture of the REALcloud framework

13 Development of Cloud Applications in Hybrid Clouds with Support…

288

 As soon as a user initiates a valid access session, the system creates a session
identifi er on a Web interface provided by the session validation service. The session
validation service queries the cloud access service running in the domain in order to
check whether the session ID is a valid one. When the access session terminates, the
session validation service reclaims the extra resources allocated to the VM and
blocks its access to the resources. Differently from the Protocol Handler package
that operates at the application layer, fi rewalls operate at the network (IP) layer,
bringing two important advantages: (1) The decision whether to block or allow the
traffi c to pass is much faster as it is performed at the packet forwarding level, and
(2) any protocol, and not only HTTP /HTTPS , is allowed to pass, as the forwarding
decision requires no inspection on the application-level protocol.

13.3 Developing Distributed Applications in the Framework

 The next steps show how distributed cloud applications can be developed inside the
infrastructure according to the features of cloud environments:

 Dynamic IP : The VM management component provides dynamic IPs offered
by the infrastructure using network bridges. IP table rules are used by the cloud
application to establish communication. For instance, the URL “ https://staticIP:
clientVMPort/ ,” with the same static IP, can be shared by many VMs through
network bridges between the server host and the users’ VMs. As shown in Fig. 13.3 ,
the following script illustrates how the server host can be confi gured for this
purpose.

 Web Services : They are an effi cient approach to the development of cloud ser-
vices. The VM management component can be used to register the Web services
provided by the cloud. Services are linked in a REST (Representational State
Transfer) approach; that is, each cloud service has a URL accessible by the Internet.
Web service methods are available by WSDL interfaces. Remote clients can have
access to the Web service functionalities by querying the offered methods in this
Web interface. Composition of services can be achieved by the combination of Web
services. The communication channel can use SOAP (Simple Object Access
Protocol) and can be encrypted by the Axis 2 toolkit [8]. As shown in Fig. 13.4 , the
following code fragment illustrates how a cloud application can be deployed in the
cloud using Axis 2 Web services:

 MapReduce Approach : Cloud applications can also be developed according to a
MapReduce approach, using pre-confi gured VMs of the SaaS model. Ready-to-go
jobs are another approach to develop distributed cloud applications. Web services
can be combined when users’ applications are submitted by querying the methods
declared in the WSDL interface of the required service.

 MapReduce is a programming model geared to the parallel processing of large
amounts of data, splitting jobs into a set of independent tasks [9 , 10]. It is widely
used in searching mechanisms such as Google, Yahoo!, Facebook, Amazon AWS,
and Last.fm. The model is noted for its simplicity. A cluster approach is used to
distribute and perform the parallel processing of data in multiple cluster nodes,

L.A. Rocha

https://staticIP:clientVMPort/
https://staticIP:clientVMPort/

289

known as worker nodes. The master nodes split the entry data into a set of indepen-
dent parts (chunks) and distribute them to the worker nodes. A worker node per-
forms a further split, if necessary, in a tree model. Each worker node processes a
slice of the main job and forwards its result to the master node. Reduction tasks join
the results of one or more worker nodes.

 Frameworks to process customized data simplify the development of distributed
cloud applications. Hadoop [10] is an example of a framework following the
MapReduce model. Hadoop is devoted to homogeneous clusters, and the master
node manages the slave nodes with similar confi gurations. The entry fi le must be
stored in the Hadoop File System (HDFS). This fi le is split in parts of 64 MB
(chunks) by default but can be replicated to reduce fault tolerance. Each chunk is
processed by a mapping task that generates a list of <key-value> pairs. The lists are
grouped in buckets based on the keys. When each task is processed, reduction tasks
are applied to the lists according to the keys. Figure 13.5 is based on [11] and illus-
trates this model where master and slave nodes can run on cloud VMs.

 Fig. 13.3 Script for establishment of network bridges

13 Development of Cloud Applications in Hybrid Clouds with Support…

290

 Fig. 13.4 Example of function for Axis 2 Web service

 Fig. 13.5 MapReduce for cloud applications in the SaaS model

L.A. Rocha

291

 Open Cloud Computing Interface (OCCI)- Based Infrastructure : OCCI is a set of
specifi cations maintained by the Open Grid Forum (OGF) to defi ne interfaces to
deliver cloud resources. OCCI is a RESTful protocol and API for management tasks
acting as a service front-end to a provider’s internal management framework. The
standards are described in three documents: OCCI Core [12] describes the formal
defi nition of the OCCI Core Model; extensions in this API will be discoverable and
visible to an OCCI client at run-time. OCCI Infrastructure [13] defi nes the model to
extend the IaaS and describes resource types, their attributes, and actions over them.
OCCI HTTP Rendering [14] defi nes the mechanism to access the OCCI Core Model
in a RESTful approach using the HTTP protocol.

 As an example, the REALcloud infrastructure offers a set of Web services for the
development of new cloud applications and HTTP syntax for the dynamic discovery
of the available users’ virtual machines. “ https://cloudStaticIP:cloudPort/Realcloud/
resources.jsp?action=<VNC|START|STOP|DETAILS>&resourceName=VM _ID ”
is the URL to interact with the set of actions of the user virtual machine. HTTP
queries are used to start a VNC session between the client Web browser and the
cloud environment. The other actions are to start, stop, and query details about each
virtual machine of the authenticated user. Figure 13.6 shows the Web client inter-
face; a RESTful approach with HTTP queries is also available. This option is impor-
tant to acquire management information about all virtual machines in the cloud
environment. As shown in Fig. 13.7 , the URL “ https://cloudStaticIP:cloudPort/
CloudInterface?id=VM_ID ” returns the OCCI -based XML data.

 Fig. 13.6 Web client application based on OCCI specifi cations

13 Development of Cloud Applications in Hybrid Clouds with Support…

https://cloudStaticIP:cloudPort/Realcloud/resources.jsp?action=<VNC|START|STOP|DETAILS>&resourceName=VMVM_ID
https://cloudStaticIP:cloudPort/Realcloud/resources.jsp?action=<VNC|START|STOP|DETAILS>&resourceName=VMVM_ID
https://cloudStaticIP:cloudPort/CloudInterface?id=VM_ID
https://cloudStaticIP:cloudPort/CloudInterface?id=VM_ID

292

 Multi - scheduler Infrastructure : The multi-scheduling approach employs different
scheduling algorithms to distribute cloud resources according to resource features
such as CPU availability, RAM usage, and storage capacity. Many cloud solutions
use multi-scheduling approaches to optimize usage of their shared resources [15].

 Eucalyptus [16] employs an allocation resource process dispatched by the cloud
provider, which ends when the requested VM is instantiated in a network node.
When an allocation request is placed, the CLC (cloud controller) component deter-
mines which CC (Cluster Controller) component will be able to instantiate the VM.
This is done by querying for cloud resources and selecting the fi rst CC component
that has available resources.

 Nimbus [17] manages its resources by means of the Workspace Resource
Manager component. It gives the cloud developer control over manageable node
groups using the libvirt library [18], jointly with the Workspace Pilot component,
which receives user jobs and performs scheduling with additional schedulers, such
as Condor [19].

 REALcloud uses a multi-scheduling approach similar to OpenNebula [20],
as shown in Fig. 13.8 : an embedded default scheduler with a rank algorithm to
distribute its VMs according to VM requirements and the servers’ performance.
The pseudo-code below shows the algorithm for resource allocation. The parameters
used for entry requests are host, CPU and RAM availability, and type of hypervisor.

 Fig. 13.7 OCCI -based document obtained in the RESTful HTTP query

L.A. Rocha

293

The rank function sorts hosts according to their availability and the users’ require-
ments to instantiate VMs. New scheduling algorithms can be implemented based on
this policy.

 Identity Management with OpenID : Public cloud services of authentication and
authorization can be aggregated into private clouds in a model known as hybrid
cloud, a combination of public and private cloud models.

 This approach is useful to avoid keeping large databases in the internal infra-
structure; that is, valid users in trusted domains can be authenticated in the private
cloud. However, authorization must be managed by the internal private infrastruc-
ture. This approach can be used in the cloud front-end package. Figure 13.9 shows
the basic authentication mechanism with OpenID . OpenID is a passive protocol that
uses HTTP forwarding between users’ applications and the identity provider.
Requests to access the authentication service are based on HTTP protocol. Users
must fi rst register themselves in an identity provider with OpenID support, which in
turn uses the user account to generate a unique URL in the Web. The URL is used
by the client’s application as an argument to discover the authentication service;
that is, authentication is a service provided by the identity provider. This URL is
used by the client application to query the identity provider that keeps the user’s
account. In the following step, users not previously authenticated must provide their
credentials (typically, user ID and password) to the authentication service of the
identity provider, identifi ed by URL. OpenID also has mechanisms to delegate rules
between peers of the same circle of trust.

 At step 1, a user with a registered identity in an OpenID provider (Google
account, for instance), but not previously registered in this domain, wants to access
resources in a cloud Web site having an OpenID authentication service. In step 2,
the user enters the OpenID URL that he/she received from the identity provider. In
step 3, the OpenID service of the cloud Web site redirects the user’s browser to the
authentication service of its identity provider. In step 4, two options are available: If
the user has been previously authenticated in the identity provider, the browser is
redirected to the validation service of the cloud Web site. If the user has not been
previously authenticated, the identity provider queries about credentials (user ID
and password) to proceed with browser redirecting. In step 5, the identity provider

 Fig. 13.8 Algorithm for resource allocation in REALcloud

13 Development of Cloud Applications in Hybrid Clouds with Support…

294

Web site uses a verifi cation service to validate the URL address that queries about
authentication with OpenID. This step is necessary for security reasons to avoid
phishing attacks (untrusted URL address). Another reason is that many sites want to
have additional information about newer users, such as user name, alternative
e-mail, and telephone number. In step 6, the identity provider redirects the user to
the cloud resource URL.

13.4 Overview of Cloud Distributed Environments

 The complete hybrid cloud environment was developed to support many concurrent
users by simplifying the usage of virtual machines inside and outside the infrastruc-
ture while keeping the requirements of availability, reliability, network performance,
and security of the whole system. This section describes the architecture, APIs , and
methodology to develop distributed applications in this environment.

 Figure 13.10 shows the main components of a generic cloud computing environ-
ment. According to this model, more specific environments can be implanted
by specializing each component. There is no clear rule requiring the use of all com-
ponents, but more complete environments should recognize their main parts in this
model. A description of each one follows.

 Fig. 13.9 Basic authentication with OpenID

L.A. Rocha

295

13.4.1 Service Provider

 This component contains the main elements that make this environment functional.
The versatility of the service provider component is supported by many open source
solutions, mainly to increase the possibility of linkage with other cloud interfaces,
extending and developing other compliant components without commercial restric-
tions, and reducing the usage of closed patterns. The bottom level of this core model
defi nes the hardware / fi rmware component. Distinct environments are highly depen-
dent on the base infrastructure. Server architecture (e.g., x86 or x64) and the avail-
ability of virtualization in hardware (e.g., CPUs with registers to support
virtualization) can have a direct impact on the performance of the whole cloud sys-
tem. The hardware includes physical servers, routers, switches, storage devices,
backup drivers, and fi rewalls. Each communication device in this base network is
offered by the datacenter provider.

 Selecting the operating system is important because the type of virtualization
will depend on it. Proprietary operating systems are regulated by commercial
licenses, increasing implantation costs in future security updates and/or software
expansion. Open source solutions bring the advantage of cost reduction, but the type
of management service must use APIs compatible with the type of virtualization
solution. Finally, the provider must consider the need of dedicated servers. For
example, cloud solutions such as Xen XCP [22] use dedicated hosts to offer their
services.

 The hypervisor is the software layer between the hardware and the operating
system and is responsible for offering shared resources to large numbers of concurrent
virtual machines (VM). The hypervisor runs in supervisor mode and manages the
scheduling of resources (CPU cycles, memory slices, disk storage, network linkage,

 Fig. 13.10 Overview of the main components of cloud computing environments (Based on [21])

13 Development of Cloud Applications in Hybrid Clouds with Support…

296

and so on) offered by the base infrastructure. Hypervisors intercept requests from
VMs and emulate privileged instructions. Hypervisors running directly over the
hardware are known as type 1 (e.g., Xen), and those running above the operating
system are known as type 2 (e.g., VirtualBox [23]).

 The hypervisor is also responsible for emulating virtual resources such as I/O
devices, CD/DVD drives, mouse, keyboard, and network interfaces. This component
must look after several security issues. Vulnerabilities in memory access security
rules in the hypervisor can lead to unauthorized access to the virtual machine, com-
promising data reliability. Cloud solutions such as Abiquo [24] and OpenNebula
support many hypervisors, each kept in a different server host. In this case a comple-
mentary management of these cloud nodes is necessary. These virtual resources are
provided by the management component. The management component also offers
other resources such as storage, complementary features to computing (e.g., more
cycles/cores of CPU, RAM), network bandwidth, and Network File System (NFS).

 Much of the success of cloud computing is related to the rapid development of
virtualization techniques, accomplished by technical advancements and cost reduc-
tion in computational hardware. Virtual machines (VMs) are an example of the
success of this theme. Many VMs can be instantiated in the same server host, help-
ing reduce the number of physical servers by means of a more effi cient usage of
resources, a technique known as server consolidation. A complete operating system
can be installed inside a VM , which in turn can be distributed or migrate to another
server host. Migration is possible if the destination server host has a compatible
virtualization interface. The format of different VMs can be converted to other
formats if the virtualization toolkit provides this feature, contributing to distribute
“ready-to-use” systems to distinct cloud providers. In addition, many cloud provid-
ers, such as Amazon EC3 and GoGrid [25], and cloud solutions, such as Eucalyptus,
OpenNebula, and Abiquo, provide templates of pre-confi gured VMs for their
environments.

 Cloud applications are inherently distributed applications with interfaces to inter-
act with the services provided by the cloud. The main consideration in their design is
that these applications have to be supplied by the cloud environment, whether using
virtualized services or any other technology with Internet access such as HTTP or
SOAP . Distributed cloud applications are different from conventional applications
with remote access, mainly because the environment has the features of [26]:

 Elasticity : Shared resources should be provided to cloud applications on demand,
that is, as soon as the cloud applications need them, but only for the period of
usage. The cloud management system should reallocate non-used resources
when the applications no longer need them.

 High access level to computational resources : Cloud applications should be acces-
sible by a gamut of different remote devices: laptops and desktops, mobile
phones, smart phones, tablets, and so on.

 Multi - tenant behavior : The same cloud application can be used by multiple users
(tenants). This model is valuable because multiple client applications can share
the same remote application. A single instance of the software runs on the server,
providing services to many concurrent client applications.

L.A. Rocha

297

 Transparency : Cloud applications are offered independently from their physical
location, and although users need not care about where their applications run
inside the cloud, this information should be given by the cloud provider. Legal
restrictions in some countries do not allow some particular contents to be
 provided in their geographical location and/or jurisdiction.

 Pay - per - use model : Billing is proportional to the usage of computational resources,
similarly to traditional bills of electricity, water, and natural gas.

 Scalability : Consumption of shared computational resources or the increase of
cloud applications and users should not degrade the performance of other con-
current cloud applications in the same domain. This issue is a consequence of the
elasticity model.

 Different models to provide service are described in the literature:

 PaaS (Platform as a Service): Users can develop their own applications with tool-
kits provided by the cloud platform. Communication services are also available,
for example, Web services, storage, and programming languages. Examples are
Ning [27] and Microsoft Windows Azure Platform [4].

 SaaS (Software as a Service): The cloud provider enables usage of exclusive user
applications and/or applications provided by the cloud environment, such as
enterprise e-mails, discussion groups, Web site toolkits, and workfl ow applica-
tions. Examples are Salesforce [28] and Google Apps [29].

 IaaS (Infrastructure as a Service): Computational resources such as storage, high-
performance computing (HPC), high network bandwidth, logical servers, and a
set of other resources and devices are provided by the infrastructure. Examples
are Amazon AWS and FlexiScale [30].

 * aaS (Everything as a Service): Any services and/or application available in a cloud
model such as a combination of the previously cited models.

13.4.2 Security

 The main issues about security can be grouped according to their importance to the
software-level (cloud applications) and to the hardware-level infrastructure. These
issues should be addressed by each element in the service provider component.

 Software - level security deals with the role of the communication protocol in the
privacy, integrity, and authentication in interactions with cloud applications [31].

 Privacy exists when only sender and receiver are able to understand the com-
munication. If someone eavesdrops on the communication channel, its contents
should not be understood by the third party.

 Integrity is guaranteed when the receiver can be sure that he/she acquired the
message exactly as sent by the other party.

 Authentication is relevant because it increases the security access level to cloud
services. Over the Internet, the HTTPS protocol, session cookies, and X.509 certifi -
cates are options to guarantee the end-to-end privacy between cloud services and
their users.

13 Development of Cloud Applications in Hybrid Clouds with Support…

298

 Communication with SSL uses a secure channel to forward data between the
server and the client application. An authenticated channel can be built using digital
signatures and a public key infrastructure. In addition, the cloud management
system should be able to provide tools to manage the authentication of its users to
ensure confi dentiality, as well as authorization techniques (e.g., role-based access
control – RBAC) to differentiate the access to services [32 , 33]. If the software is
provided by or developed in the cloud, the platform needs to keep policies to ensure
that no harmful software, such as worms, trojans, or viruses, can propagate in the
system.

 Security for infrastructure deals with the guarantee that access to cloud resources
is protected against external malicious users. Generally this can be achieved by
fi rewall rules between the public link access and the private cloud network (e.g.,
using IP table rules). Resource availability should be managed with techniques of
fail tolerance, load balance, patch management, monitoring, backup redundancy,
and others. However, this whole set of techniques will only be effective if clear rules
are kept to control personal access to physical hosts.

13.4.3 Service Consumer

 Cloud users have access to cloud services by interfaces compatible with the cloud
environment. Role - based interfaces allow different interactions with the cloud ser-
vices according to the role that each specifi c user plays in the environment. For
example, authenticated users must be able to log into the system, instantiate/stop
VMs, perform status queries, and so on, but administrative functions such as creat-
ing and removing VMs should be restricted to them. This same issue is seen in
collaborative applications such as Google Docs [34] and Picasa [35], where the
RBAC roles are applied to users.

 Service - Level Agreements (SLAs) should be regulated by the law of the country.
In scenarios where agility to accommodate unpredictable consumption is important,
SLAs are critical to defi ne the relationship between the cloud service provider and
its consumers. A more detailed report of this issue can be found in [36].

 Application Programming Interfaces (APIs) on the side of the service consumer
must also abide by the rules when interacting with remote services. APIs simplify
the development of new services, but the cloud provider must keep its APIs up to
date to avoid security risks.

13.4.4 Management

 Billing follows the pay-per-use model, in which the price charged is proportional to
resource consumption. OpenQRM [37] is an open source example of architecture
that allows billing in the private cloud and supports EC2 standards for APIs . It also

L.A. Rocha

299

supports virtualization techniques such as KVM [38] and Xen, as well as management
of hosts, virtual machines, and deployments. Virtualized images of Ubuntu, Debian,
and CentOS are supplied as templates. However, in many other private cloud solu-
tions, the billing component is not necessary.

 Load balance deals with how the infrastructure supports requests and how its
resources are maintained to achieve high performance and better utilization.

 The measurement component establishes metrics to perform several manage-
ment tasks.

 Provisioning deals with policies to offer resources to many concurrent users.
Again, policies must take into account availability, scalability when more resources
need to be provided by other domains, and resource scheduling. It is common for
each cloud solution to implement its own solutions to monitoring, but this task can
be carried out with open source middlewares, such as Nagios [39], an open source
tool allowing extensions by plug-ins. For instance, the NRPE (Nagios Remote
Plugin Executor) monitors the number of users logged in the system, CPU con-
sumption, memory used by each virtual machine, and number of active processes in
the server hosts [40].

13.4.5 Service Developer

 Publishing describes how services are provided and how they can be accessed,
either internally or over the Internet. For example, access to virtual machines can be
provided by a specifi c URL and/or via VNC protocol. In addition, applications can
show their methods in WSDL language, and communication can be done via the
HTTP or SOAP protocols. Many providers offer their own sets of APIs (e.g., Google
App Engine) to interact with their public services according to the PaaS model. Also
provided are exclusive frameworks , for example, Microsoft Azure with .NET frame-
work, and other development tools , for example, datasheets, corporate e-mail,
workfl ows, and other tools in Salesforce.com.

13.5 Final Considerations

 It is important that the development of cloud applications be guided by frameworks
to avoid a mix of unrelated structures. The main features of cloud domains need to
be considered jointly with the needs of the institution. Furthermore, open standards
contribute to simplifying the integration with other domains and extending the por-
tability of applications.

 Related issues in the development of cloud applications are about collaborative
applications such as Google Docs, storage in cloud with Dropbox, and Google
Drive. Such applications are highly dependent on network performance between the
client user and the service provider. In addition, cache routines in the client applica-
tion guarantee data integrity.

13 Development of Cloud Applications in Hybrid Clouds with Support…

300

 Many other security features aim to increase the reliability of data exchange.
Synchronization protocols are an example – the timestamp needs to be valid in both
sides. Network data encryption with AES 256 bit and SSL connection are extra
protection offered by some providers.

 Portability is another issue to be considered. Customizing the cloud service
according to the client device features is another challenge, for example, for Web
connection with mobile devices.

 Much research has been done on how to provide inter-cloud communication and
establish federations [41]. Cloud computing is emerging as a new paradigm to offer
services in the Web, one that can lead to new business opportunities, but the diffi cult
issue of security remains open. This is because in a cloud numerous applications are
available as services, many of which have their own access control systems.
Furthermore, applications that support service compositions across distinct domains
require authentication mechanisms that take into account this collaborative nature.

 Acknowledgments The author thanks Marcos Favero Florence de Barros for his language editing
services.

 References

 1. Open Cloud Computing Interface (OCCI): Available at: http://occi-wg.org/about (2012)
 2. OpenID Foundation Website: Available at: http://opened.net (2012)
 3. Amazon AWS. Amazon Elastic Compute Cloud (Amazon EC2): Available at: http://aws.ama-

zon.com/ec2 (2012)
 4. Windows Azure: Microsoft’s Cloud Platform: Available at: http://www.microsoft.com/

windowsazure (2012)
 5. Globus Toolkit: Welcome to the Globus Toolkit Homepage. Available at: http://www.globus.

org/toolkit (2012)
 6. Rocha, L.A., Olivi, L., Feliciano, G., Paolieri, F., Rodrigues, D., Cardozo, E., Guimarães, E.:

A cloud computing environment for supporting networked robotics applications, DASC. In:
IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pp.
1110–1116. Sydney, Australia (2011)

 7. Rocha, L.A., Feliciano, G., Olivi, L., Cardozo, E., Guimarães, E.: A bio-inspired approach to
provisioning of virtual resources in federated clouds, DASC. In: IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, pp. 598–604, Sydney,
Australia (2011)

 8. Apache Axis2: Available at: http://axis.apache.org/axis2 (2012)
 9. Shankar, R., Narendra, G.: MapReduce programming with Apache Hadoop – process massive

data sets in parallel on large clusters. Javaworld. Available online at: http://www.javaworld.
com/javaworld/jw-09-2008/jw-09-hadoop.html (2008)

 10. Yahoo! Developer Network: MapReduce: Available at: http://developer.yahoo.com/hadoop/
tutorial/ (2012)

 11. Dean, J., Ghemawat, S.: Mapreduce: simplifi ed data processing on large clusters. Commun.
ACM 51 , 107–113 (2008)

 12. GFD.183 – OCCI Core (v1.1): Available at: http://www.ogf.org/documents/GFD-183.pdf
(2011)

 13. GFD.184 – OCCI Infrastructure (v1.1): Available at: http://www.ogf.org/documents/GFD-
184.pdf (2011)

L.A. Rocha

http://occi-wg.org/about
http://opened.net/
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://www.microsoft.com/windowsazure
http://www.microsoft.com/windowsazure
http://www.globus.org/toolkit
http://www.globus.org/toolkit
http://axis.apache.org/axis2
http://www.javaworld.com/javaworld/jw-09-2008/jw-09-hadoop.html
http://www.javaworld.com/javaworld/jw-09-2008/jw-09-hadoop.html
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://www.ogf.org/documents/GFD-183.pdf
http://www.ogf.org/documents/GFD-184.pdf
http://www.ogf.org/documents/GFD-184.pdf

301

 14. GFD.185 – OCCI HTTP Rendering (v1.1): Available at: http://ogf.org/documents/GFD-185.
pdf (2011)

 15. Gonçalves, G.E., Endo, P.T., Cordeiro, T.D., Palhares, A.V.A., Sadok, D., Kelner, J., Melander,
B., Mangs, J.: Resource allocation in clouds: concepts, tools and research challenges. In: Mini-
curso– SBRC. Campo Grande, MS, Brazil (2011)

 16. Johnson, D., Murari, K., Raju, M., Suseendran, R.B., Girikumar, Y.: Eucalyptus Beginner’s
Guide – UEC Edition – Ubuntu Server 10.04 – Lucid Lynx. CSS Corp. Available online at:
 http://cssoss.fi les.wordpress.com/2010/06/book_eucalyptus_beginners_guide_uec_edition1.
pdf (2010)

 17. Nimbus Project: Available at: http://www.nimbusproject.org/ (2012)
 18. Libvirt – virtualization API: Available at: http://www.libvirt.org (2012)
 19. Condor High Throughput Computing: Available at: http://research.cs.wisc.edu/condor/ (2012)
 20. OpenNebula Project Leads: Opennebula. Available at: http://opennebula.org (2012)
 21. Amrhein, D., et al.: Cloud Computing Use Cases White Paper Version 4.0. Technical Report

(2010)
 22. XenServer: Available at: http://www.citrix.com (2012)
 23. VirtualBox: Available at: http://www.virtualbox.org (2012)
 24. Abiquo: Architecture Overview: Available at: http://community.abiquo.com (2012)
 25. GoGrid: Available at: http://www.gogrid.com (2012)
 26. Martins, A.: Fundamentos de Computação Nuvem para Governos – Amãpytuna – Computaç

ão em Nuvem: serviços livres para a sociedade do conhecimento, chapter 2, pp. 47–65. ISBN:
978-85-7631-241-3. Alexandre de Gusmão Foundation (2010)

 27. Ning: Available at: http://www.ning.com (2010)
 28. Salesforce: Available at: http://salesforce.com (2012)
 29. Google Apps for Business: Available at: http://www.google.com/a/ (2012)
 30. FlexiScale public cloud: Available at: http://www.fl exiant.com/products/fl exiscale (2012)
 31. The Globus Toolkit 4 Programmer’s Tutorial: Fundamental Security Concepts. The three pil-

lars of the secure communication. Available at: http://gdp.globus.org/gt4-tutorial/singlehtml/
progtutorial_0.2.1.html (2005)

 32. Ramachandran, M.: Component-Based Development for Cloud Computing Architectures.
Cloud Computing for Enterprises Architectures, Computer Communications and Networks.
Springer, London (2011)

 33. Ahmed, K.E.U., Alexandrov, V.: Identity and Access Management in Cloud Computing.
Cloud Computing for Enterprises Architectures, Computer Communications and Networks.
Springer, London (2011)

 34. Google docs: Available at: http://docs.google.com (2012)
 35. Picasa Web Albums: free photo sharing from Google: Available at: http://picasaweb.google.

com (2012)
 36. Buck, K., Hanf, D.: Cloud SLA Considerations for the Government Consumer. Systems

Engineering at MITRE. Cloud Computing Series. The MITRE Corporation. Available online
at: http://www.mitre.org/work/tech_papers/2010/10_2902/cloud_sla_considerations_government.
pdf (2012)

 37. OpenQRM: Available at: http://www.openqrm-enterprise.com/ (2012)
 38. Kernel-based Virtual Machine: Available at: http://www.linuxkvm.org/page/Main_Page

(2012)
 39. Nagios – The Industry Standard in IT Infrastructure Monitoring: Available at: http://www.

nagios.org (2012)
 40. Chaves, S.A., Uriarte, R.B., Westphall, C.B.: Implantando e Monitorando uma Nuvem Privada.

In: VIII WCGA, Brazilian Symposium on Computer Networks and Distributed Systems,
SBRC. Gramado, RS, Brazil (2010)

 41. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable cloud computing
environments and the CloudSim toolkit: challenges and opportunities, high performance com-
puting & simulation. In: HPCS ’09. International Conference, Leipzig (2009)

13 Development of Cloud Applications in Hybrid Clouds with Support…

http://ogf.org/documents/GFD-185.pdf
http://ogf.org/documents/GFD-185.pdf
http://cssoss.files.wordpress.com/2010/06/book_eucalyptus_beginners_guide_uec_edition1.pdf
http://cssoss.files.wordpress.com/2010/06/book_eucalyptus_beginners_guide_uec_edition1.pdf
http://www.nimbusproject.org/
http://www.libvirt.org/
http://research.cs.wisc.edu/condor/
http://opennebula.org/
http://www.citrix.com/
http://www.virtualbox.org/
http://community.abiquo.com/
http://www.gogrid.com/
http://www.ning.com/
http://salesforce.com/
http://www.google.com/a/
http://www.flexiant.com/products/flexiscale
http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial_0.2.1.html
http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial_0.2.1.html
http://docs.google.com/
http://picasaweb.google.com/
http://picasaweb.google.com/
http://www.mitre.org/work/tech_papers/2010/10_2902/cloud_sla_considerations_government.pdf
http://www.mitre.org/work/tech_papers/2010/10_2902/cloud_sla_considerations_government.pdf
http://www.openqrm-enterprise.com/
http://www.linuxkvm.org/page/Main_Page
http://www.nagios.org/
http://www.nagios.org/

 Part IV
 Performance of Cloud Based Software

Applications

305Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_14, © Springer-Verlag London 2013

 Abstract As cloud computing continues to burgeon throughout the technology
sphere, it becomes essential to understand the signifi cance of this emerging technol-
ogy. By its nature, it offers an organization a great deal of agility and cost savings.
Cloud technologies are being applied and leveraged in different applications fueling
growth in the number of Infrastructure-as-a-Service (IaaS) and Platform-as-a-
Service (PaaS) vendors. The business delivery models of cloud computing have
raised interests across the IT industry as the resources are offered as utilities and on
demand. From a developer perspective, it is important to grasp the nuances of cloud-
based application development to improve the development process. This chapter
discusses best practices in relation to some of the celebrated cloud features.
Furthermore, most common and well-known features of cloud frameworks are pre-
sented to aid the developer’s choice. Lastly, comparative cloud-based architectural
discussion on developing and deploying a Web application using industry popular
frameworks is presented. Although, cloud computing as a service/development
paradigm addresses several well-known issues like scalability and availability, there
are several concerns with respect to security and privacy of data which has opened
doors for research opportunities. Some plausible research directions are also
identifi ed.

 Keywords Scalability • Cloud computing • Azure • App engine • Storage •
 Frameworks • Application development

 Chapter 14
 Effi cient Practices and Frameworks
for Cloud- Based Application Development

 Anil Kumar Muppalla, N. Pramod, and K. G. Srinivasa

 A. K. Muppalla • N. Pramod • K. G. Srinivasa (*)
 High Performance Computing Laboratory , Department of Computer Science and Engineering ,
 M S Ramaiah Institute of Technology , Bangalore , India
e-mail: anil.kumar.848@gmail.com; npramod05@gmail.com; srinivasa.kg@gmail.com

306

14.1 Introduction

 Prior to 2007, there was a need for any large technology corporation to maintain
infrastructure to fulfi ll the needs of the company and its clients [1]. With the emer-
gence of cloud computing, the situation has changed. There seems to be wide
acceptance in the prospect of buying infrastructure usage rather than the hardware
itself with immediate cost benefi ts. The on-demand delivery of hardware, software,
and storage as a service is termed as cloud computing . The union of data center
hardware, software, and storage is what we will call a cloud . An application based
on such clouds is taken as a cloud application . This paradigm has revolutionized the
service industry with increasing support from Microsoft [2], Google [3], and IBM [4].
Three striking aspects of cloud computing are [5]:

• The impression of infi nite cloud resources available on demand, thereby dismiss-
ing the need for users to plan far ahead for provisioning.

• The on-demand commitment of resources by cloud, thereby allowing companies
to start small and request resources as and when the need arises.

• The pay-per-use model has encouraged ability to pay for use of computing
resources on a short-term basis as needed and release them as needed.

 Efforts to conceptualize cloud computing dates back to, at least, 1998 [6].
However, the adoption and promotion of cloud computing has been slow until
2007 [1]. The background of early industrial adoptions of cloud computing coin-
cides with that of service computing [7]. Service computing [8] received worldwide
support from leading companies like IBM and Microsoft [9]. The widespread
adoption of cloud computing is driven by stable and mature development of tech-
nologies and computing resources. Success stories of Web services have comple-
mented the popularity service computing, although a Web service is one such
technology to fulfi ll the need for service orientation [7]. Many distributed computing
techniques for cloud computing have been mature [10 – 12]. Decoupling the parts
of the application environment allows for scalability on different levels; these parts
are further provided to the developers as services. Based on the type of the service
provided, cloud computing can be classifi ed as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS) [13].

 Developers reap several benefi ts developing their application on a cloud-based
programming environment provided through a PaaS provider, such as automatic
scaling and load balancing, as well as integration with other services (email and
authentication). Such provisions alleviate much of the overhead of developing cloud
applications. Furthermore, integration of their applications with other services on-
demand increases the likelihood of usage of these applications, thereby driving the
need to develop cloud-based applications. This in turn makes the cloud application
development a less complicated task, accelerates the deployment time, and mini-
mizes the logic faults in the application, for example, deployment of a distributed
computing environment such as Hadoop [14 , 26] on the cloud which provides its
application developers with a programming environment, that is, MapReduce

A.K. Muppalla et al.

307

framework for the cloud. As such, cloud software environments facilitate the pro-
cess of cloud application development.

 Cloud computing brings this whole new way of thinking about architecture and
design, since we don’t control the infrastructure directly hence one step less in the
design process. The application is supported to scale horizontally, be very cost
effective in operation as you can scale up and scale down and obtain granular con-
trol over CPU expense. As several platforms such as Force.com are rich and provide
the boilerplate code, developing applications on it becomes a much higher-level
activity. The gap between domain experts who conceptualize the product and devel-
opers who code it signifi cantly narrows down. The adoption of cloud computing has
improved the development process of several applications and services.

 The differences between cloud-based application and traditional application
are presented in Table 14.1 . There is no signifi cant change in the development
process of a cloud application; since the division of the application development
environment into infrastructure, platform, and software has signifi cantly helped
in overcoming some common challenges of traditional software development,

 Table 14.1 Comparison between traditional and cloud-based application

 Traditional applications Cloud-based applications

 Each application is deployed and maintained
as a bundle in a common environment

 With diverse environment capabilities of
the cloud, the application is deployed
and maintained as modules, scattered
across environments

 Run-time infrastructure is structured and controlled,
giving rise to maintenance overhead

 Run-time infrastructure is unstructured
and managed by cloud fabric, with
computing capabilities changing

 Business functionality is realized by using
“controller” components that calls methods
(functions) of business components

 Service orchestration is used to realize
business functionality—invoke one or
many business services

 Support for multi-tenancy is typically not required Multi-tenancy support is assumed
 User base is assumed at design time, and scalability

is addressed at run-time by procuring necessary
hardware

 User base need not be known, potential
to scale up and down rapidly

 Enhancements and upgrades require downtime No downtime required for enhancements
and upgrades

 Components interact with non-SOA contracts like
RMI and CORBA

 Standard SOA service-based interaction
between components is assumed like
SOAP and REST

 Deployment requires traditional tools
(application server admin console, ANT, etc.)

 Along with traditional tools, requires
knowledge and utilization of
vendor-specifi c cloud APIs

 Application is tested in controlled environment
(Unit/integration/system)

 Application (integration) is tested
on the cloud to ensure seamless
orchestration between services
on one or many clouds

 Security is enforced by application architecture
(LDAP lookup based authentication/authorization)

 Security is built into the service contracts
(WS-Security, SAML, etc.)

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

308

it has led to accelerated development and deployment, ensuring shorter release
cycles. The cloud application development enforces an agile form of development.
Some advantages are:

• Short release cycles means processes used for developing these applications are
agile/scrum based.

• Heavy stress on acceptance as well as unit tests.
• Traditional task management practices and timesheet processes are not

applicable.
• No formal workfl ow processes for reviews.

14.2 Design Patterns for Key Issues of Cloud Application
Development

14.2.1 Scalability

 This is defi ned as the ability of the system to handle growing amount of work in a
reliable manner [15]. Scalability in cloud perspective can be addressed by considering
the following:

14.2.1.1 Load Sharing

 It is the logical spreading of requests across similar components for handling those
requests, from a cloud development point of view, and distribution of requests,
which are mainly HTTP but can be any application protocol, across all the instances
using an effi cient confi gured load-balancing algorithm. This is a scaling-out
approach. Several load-balancing facilities are provided across development
platforms; the task of the developer would be to tie the application to these APIs.

14.2.1.2 Partitioning

 Intelligent load distribution across many components by routing an individual
request to a data-specifi c component, effi ciency, and performance is dramatically
increased in an application’s delivery architecture while enabling this facility.
Instead of having identical instances, each instance or pool of instances, as shown
in Fig. 14.1 , is marked as the owner . This enables the developers to confi gure the
development environment to handle type-specifi c request. The concept of applica-
tion switching and load balancing achieve individual importance as the former is
used to route a particular request which can be then load balanced across a pool of
resources. It’s a subtle distinction but an important one when architecting not only
effi cient and fast but resilient and reliable delivery networks.

A.K. Muppalla et al.

309

14.2.1.3 Vertical Partitioning

 It is a partitioning using different processing units while routing application requests
that we separate by function that is associated with a URI. Content wise, partition-
ing is the most common implementation strategy. Consider an example of creating
resource pools based on the Content-Type HTTP header: content in pool content
servers and images in pool image servers . This provides for greater optimization of
the Web/application based on the usage pattern and the content type. In a distributed
environment, architects leverage say cloud-based storage for static content while
maintaining dynamic content (and its associated data stores) on premise. This
hybrid strategy is regarded to have successful acceptance across the cloud
community.

14.2.1.4 Horizontal Partitioning

 Through partitioning, persistence-based load balancing is accomplished, as well as
the handling of object caching. This also describes the way in which you might
direct requests received from specifi c users to designated instances that are specifi -
cally designed to handle their unique needs or requirements, for example, separa-
tion of privilege users from free users based on some partitioning key, which is
cookie information.

 Fig. 14.1 Grouping instances into task-specifi c pools [16]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

310

14.2.1.5 Relaxing Data Constraints

 Techniques and trade-offs with regard to the immediacy of processing/storing/
access to data fall in this strategy. This requires intelligent handling of data storage
and access based on varying properties like usage and prioritization of the content.
If one relaxes the constraints around access times for certain types of data, it is
possible to achieve a higher-effi ciency use of storage by subjugating some content
to secondary and tertiary storage tiers which may not have the same performance
attributes as your primary storage tier.

 Architecting a solution that separates data reads from writes implies eventual
consistency, as data updated/written to one database must necessarily be replicated
to the databases from which reads are, well, read, but that’s part of relaxing a data
constraint.

14.2.1.6 Parallelization

 This refers to working on the same task in parallel on multiple processing units
employing tools and methods like MapReduce and SPDY. If the actual task can be
performed by multiple processing units, then an application delivery controller
could certainly be confi gured to recognize that a specifi c URL should be essentially
sent to some other proxy/solution that performs the actual distribution. We can
observe that the processing model here deviates sharply from the popular request -
reply paradigm.

14.2.1.7 Going Stateless

 Application state maintenance can often hinder any scalability efforts, which
normally involves persistence, and persistence means storing your data in some
central location, and central data store is diffi cult to scale. Adopting RESTful nature
(without being limited to HTTP) is a viable choice.

14.2.2 Elasticity

 Dynamic resource utilization is a central concept in cloud computing. Application
design must allow resources to be reserved and freed as needed. The aspects that
drive the need to automate elasticity are as follows: (1) applications have to monitor
themselves or have to be monitored externally, (2) application resources have to be
provisioned based on this information, and (3) applications have to cope with addi-
tion and removal of resources. In order to fully benefi t from the dynamicity of an
elastic infrastructure, the management process to scale out an application has to be
automated [17]. This way, the number of used resources can be aligned to changing

A.K. Muppalla et al.

311

workload quickly. If pay-per-use pricing models are available, the resource number
directly affects the running cost of the application. Manual resource scaling would
not respect this.

 Requests received by an application are a good measure of workload and there-
fore shall be used as a basis for scaling decisions. An elastic load balancer automati-
cally determines the amount of required resources based on numbers of requests
and provisions the needed resources accordingly using the elastic infrastructure’s
API. Number of requests in unit time is observed from the components, and required
number of resources (this is crucial design element) is computed by the load
balancer and provisioned on the elastic infrastructure using its API. It signifi cantly
affects the effectiveness of the scaling decisions. It should be carefully selected
during the design of the application using capacity planning techniques. Also, such
behavior needs to be real time.

 If the application can handle asynchronous requests, another layer of optimiza-
tion can be implemented since there is a possibility of fl uctuation in resource costs
or cloud elasticity. The tasks can be delayed based on the availability of the
resources. Some non-business-critical or time-critical workload, such as report gen-
eration, can be moved to times when resources of the private cloud are less utilized.
An elastic queue is used to distribute requests among application components.
Based on the number and type of messages it contains, the elastic queue determines
the number of computing nodes to be provisioned. The elastic queue can contain
different message types that are handled by different components. To speed this
process up, individual images for application components are stored in the image
database of the elastic infrastructure. Additionally, the elastic queue can respect
environmental information, such as the overall infrastructure or resource price. This
is used to delay less critical messages by reducing the number of handling compute
nodes and to prioritize the business-critical functionality if the overall infrastructure
utilization is high.

14.2.3 Availability

 The use of commodity hardware to build the cloud has an advantage to reduce costs
but also reduces the availability of resources . Therefore, cloud applications have to
be designed to cope with failing resources to guarantee the required availability.
Sometimes, (high) availability is only expressed regarding the possibility to start
new compute nodes. To guarantee high availability under such conditions, the appli-
cation architecture needs to be adjusted to enable redundancy and fault-tolerant
structures. The application architecture is altered to include redundant compute
nodes performing the same functionality. High available communication between
these nodes is assured, for example, by a messaging system. Additionally, compute
nodes are monitored and replaced in case of failure.

 In a setting where high available compute nodes are used, the decoupling of
components can also increase the performance and enable elasticity. As in every

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

312

setup where messaging is used, the compute nodes need to consider the delivery
assurances made by the messaging systems. Business-critical components of an
application should be available at all times even during update. During an update,
the elasticity of cloud aids in provision of additional compute nodes that contain
the new application or middleware versions additionally to the old versions, conse-
quently the shutdown of old compute nodes. One such method is providing images
for compute nodes with the new software version that is created and tested. Hence,
a graceful transition from the old to new application versions is executed. If differ-
ent versions must not be handling requests at the same time, the transition is
imminent. This is handled by instantiating both application versions independently.
The switch can then be made by reconfi guring the access component, such as a load
balancer. However, in some cases this can result in a minimal downtime during the
transition [17].

14.2.4 Multi-tenancy

 Any party that uses an application is termed a tenant . Sometimes a tenant can be a
single user of an entire organization. Many of the cloud properties, such as elasticity
and pay-per-use pricing models, can only be achieved by leveraging economies of
scale. Cloud providers therefore have to target large markets and share resources
between customers to utilize resources effectively. Hardware virtualization has been
the fi rst to foray into resource sharing through Infrastructure - as - a - Service delivery
model. There is need for additional architectural modifi cations to support sharing of
higher-level application components. When application is provided to multiple
customers (multi-tenacity), deployment of componentized applications can be
optimized by sharing individual component instances whenever possible. This is
especially feasible for application components that are confi gured equally for all
tenants, for example, currency converters. If tenants can share common resources,
then underlying resources can be utilized in more effi cient ways. This requires the
confi guring for multi-tenacity. The tenant’s individual application instances access
the same application component (pool). Therefore, the run-time cost per tenant can
be reduced, because the utilization of the underlying infrastructure is increased and
the shared component can be scaled for all tenants. If the confi guration is equivalent
for all tenants, a single instance can be used. Sometimes, tenants are not allowed
to share critical components with other users. In this case, a multiple instance
component must be used.

 Additional use case wherein an application is instantiated to support multi-
tenacity but some of its components cannot be shared may be due to laws prohibiting
the same. So, tenants may require integration of individually developed application
components into the provided application. Deploy individual component imple-
mentations and confi gurations for each tenant. This arrangement allows tenants to
adjust components very freely. Portions of an application, on which tenants have a
versatile behavior, can be realized in such a fashion. However, the application of this
pattern hinders resource sharing between tenants.

A.K. Muppalla et al.

313

14.2.5 High Performance

 A load-balancing algorithm coupled with the MapReduce programming paradigm
serves the purpose of processing large volumes of data. MapReduce is a parallel
programming model that is supported by some capacity-on-demand type of clouds
such as Google’s BigTable , Hadoop , and Sector [18]. Load balancing is helpful in
spreading the load equally across the free nodes when a node is loaded above its
threshold level. Though load balancing is not so signifi cant in execution of a
MapReduce algorithm, it becomes essential when handling large fi les for processing
and when availability of hardware resources is critical. Hadoop MapReduce has
wide industry acceptance also being the top programming model implemented.

 An effi cient load-balancing technique can sometimes make all the difference in
obtaining maximum throughput. The arrangement is considered balanced if for each
data node, the ratio of used space at the node to the total capacity of node (known as
the utilization of the node) differs from the ratio of used space at the cluster to the
total capacity of the cluster (utilization of the cluster) by no more than the threshold
value [17]. In view of hyper-utilization the module moves blocks from the data nodes
that are being utilized a lot to the poorly used ones in an iterative fashion. In this
implementation, nodes are classifi ed as high , average , and low depending upon the
utilization rating of each node. In a cloud environment, the MapReduce structure
increases the effi ciency of throughput for large data sets. In contrast, you wouldn’t
necessarily see such an increase in throughput in a non-cloud system. Therefore,
consider a combination of MapReduce-style parallel processing and load balancing
when planning to process a large amount of data on your cloud system.

14.2.6 Handling Failure

 Unlike the traditional applications which are entirely dependent on the availability
of the underlying infrastructure, cloud applications can be designed to withstand
even big infrastructure outages. With the goal that each application has minimal or
no common points of failure, the components must be deployed across redundant
cloud components. These components must make no assumptions about the under-
lying infrastructure; that is, it must be able to adapt to changes in the infrastructure
without downtime.

 Designing for failure also comes with fair share or challenges such as large data
processing which requires frequent movement of large volumes of data causing
inertia. By building simple services composed of a single host, rather than multiple
dependent hosts, one can create replicated service instances that can survive host
failures. For example, if we had an application that consisted of business logic com-
ponent 1, 2, 3, each of which had to be live on a separate host, we could compose
service group (1, 2, 3), (1, 2, 3)… or we could create component pools (1, 1, …),
(2, 2, …), (3, 4, …). While the composition (1, 2, 3), a single machine failure would
result in the loss of a whole system group. By decomposing resources into

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

314

independent pools, a single host failure only results in the loss of a single host’s
worth of functionality.

 Another practice is to ensure short response time ensured by noting if the request
returns a transient error or doesn’t return within a small time, a retry is triggered to
another instance of the service. If you don’t fail fast and retry, distributed systems,
especially those that are process or thread-based, can lock up as resources are con-
sumed waiting on slow or dead services.

 Thus, separating business logic into small stateless services that can be organized
in simple homogeneous pools is much more effi cient. The pool of stateless record-
ing services allows upstream services to retry failed requests on other instances of
the recording service. In addition, the size of the recording server pool can easily be
scaled up and down in real time based on load.

14.3 Analysis of Storage as a New Form of Service

 As technology continues to mature, several previously coupled components have
broken out to exist independently. One such component is storage, still part of the
infrastructure in principle, which has open doors for targeting specifi c business
areas. To understand the application of storage as a service on its own, several
delivery metrics need to be discussed along with established best practices [27],
with support of the general architecture in Fig. 14.2 .

14.3.1 Access

 One problem with Web service APIs is that they require integration with an applica-
tion to take advantage of the cloud storage. Most providers implement multiple
access methods, but Web service APIs are common. Many of the APIs are imple-
mented based on REST principles, which imply an object-based scheme developed
on top of HTTP (using HTTP as a transport). REST APIs are stateless and therefore
simple and effi cient to provide. Therefore, common access methods are also used
with cloud storage to provide immediate integration. For example, fi le-based proto-
cols such as NFS/Common Internet File System (CIFS) or FTP (File Transfer
Protocol) are used, as are block-based protocols such as iSCSI (Internet Small
Computer System Interface).

14.3.2 Performance

 Performance issues of storage systems range from small transactional accuracy to
large data movement, but the ability to move data between a user and a remote cloud
storage provider represents the largest challenge from a cloud storage perspective.

A.K. Muppalla et al.

315

The problem is TCP, as it controls the fl ow of data based on packet acknowledg-
ments from the peer endpoint. Packet loss and late arrival enable congestion control
as a useful feature but also limits performance as these are more network-intensive
tasks. TCP is ideal for moving small amounts of data through the global Internet but
is less suitable for larger data movement, with increasing RTT (round-trip time).
This problem is solved by removing TCP from the equation. A new protocol called
the Fast and Secure Protocol (FASP) was developed to accelerate bulk data move-
ment in the face of large RTT and severe packet loss. The key is the use of the UDP,
which is the partner transport protocol to TCP. UDP permits the host to manage
congestion, pushing this aspect into the application layer protocol of FASP, as
shown in Fig. 14.3 .

14.3.3 Availability

 Once a cloud storage provider has a user’s data, he/she must be able to provide that
data back to the user upon request. Given the network outages, user errors, and other
circumstances, reliability and availability can prove to be a major hurdle. There are
some interesting and novel schemes to address availability, such as information dis-
persal (Information Dispersal Algorithm (IDA)), to enable greater availability of
data in the face of physical failures and network outages. IDA is an algorithm that

Many users

Network/Internet

Front end

M
an

ag
ea

bi
lit

y

• Access protocol
• Performance
• Public/private/hybrid

• Multi-tenancy
• Scalability
• Availability

• Control
• Reliability
• Security

• Storage efficiency
• Cost

Storage logic

Back-end storage

 Fig. 14.2 General
architecture of storage
service [17]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

316

allows data to be sliced with Reed-Solomon codes for purposes of data reconstruction
in the face of missing data. Furthermore, IDA allows you to confi gure the number
of data slices, such that a given data object could be carved into four slices with one
tolerated failure or 20 slices with eight tolerated failures. Similar to RAID, IDA
permits the reconstruction of data from a subset of the original data, with some
amount of overhead for error codes (dependent on the number of tolerated failures).
The downside of IDA is that it is processing intensive without hardware accelera-
tion. Replication is another useful technique and is implemented by a variety of
cloud storage providers. Although replication introduces a large amount of over-
head (100 %), contrast to very low overhead by IDA, it is simple and efficient
to provide.

14.3.4 Control

 A customer’s ability to control and manage how his or her data is stored has always
motivated several storage providers. Although replication is a common method to
ensure redundancy and hence availability, it also requires more than idea storage
space. Reduced Redundancy Storage (RRS) is one such method that ensures to
provide users with a means of minimizing overall storage costs. Data is replicated
within the vendor’s infrastructure, but with RRS, the data is replicated fewer times
with the possibility for data loss. This is ideal for data that can be recreated or that
has copies that exist elsewhere.

Client Client

REST

HTTP

FASP

Sockets Sockets

TCP UDP

IP IP

NIC NIC

 Fig. 14.3 Communication
stack

A.K. Muppalla et al.

317

14.3.5 Effi ciency

 Storage effi ciency is an important characteristic of cloud storage infrastructures,
particularly with respect overall cost. This characteristic speaks more to the effi cient
use of the available resources over their cost. To make a storage system more
effi cient, more data must be stored. A common solution is data reduction, whereby
the source data is reduced to require less physical space. Two means to achieve
this include compression —the reduction of data through encoding the data using a
different representation—and de - duplication , the removal of any identical copies of
data that may exist. Although both methods are useful, compression involves pro-
cessing (re-encoding the data into and out of the infrastructure), where de- duplication
involves calculating signatures of data to search for duplicates.

14.4 Frameworks

 Developers can use the cloud to deploy and run applications and to store data.
On-premises applications can still use cloud-based resources. For example, an
application located on an on-premises server, a rich client that runs on a desktop
computer, or one that runs on a mobile device can use storage that is located on the
cloud. Cloud application development is aided signifi cantly with the provision of
frameworks and development environments which the developers can leverage to
produce applications guided by useful abstractions. These frameworks have proven
to reduce the development time, therefore receiving wide acceptance. The period
from 2007 to 2011 has witnessed exponential growth in adoption of cloud frame-
works with Amazon kicking off this trend and recently several others perfecting it.
This section provides important features of three such frameworks from industry
leaders like Amazon, Google, and Microsoft.

14.4.1 Windows Azure

 The Windows Azure platform by Microsoft Corporation provides hardware abstrac-
tion through virtualization. Every application that is deployed to Windows Azure
runs on one or more virtual machines (VMs) [19]. The applications behave as
though they were on a dedicated computer, although they might share physical
resources such as disk space, network I/O, or CPU cores with other VMs on the
same physical host; this is the abstraction that is possible with decoupling infra-
structure from the application. A key benefi t of an abstraction layer above the physi-
cal hardware is portability and scalability. Virtualization of a service allows it to be
moved to any number of physical hosts in the data center. By combining virtualiza-
tion technologies, commodity hardware, multi-tenancy, and aggregation of demand,

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

318

Azure has become one of the most coveted platforms. These generate higher data
center utilization (i.e., more useful work-per-dollar hardware cost) and, subse-
quently, savings that are passed along to you. Figure 14.4 presents the high-level
architecture of Azure, which encapsulates the above-discussed features.

14.4.1.1 Salient Features of Azure

 Here are some salient features of Windows Azure:

• Supports all major .NET technologies and provides wide language support across
Java, PHP, and Python [24 , 25]

• Windows Azure Compute:

 – Computing instances run Windows OS and applications (CPU + RAM + HDD)
 – Web role: Internet information services machine for hosting Web applications

and WCF services
 – Worker role: long-running computations

• Azure data storage services:

 – Azure table storage: distributed highly scalable cloud database (stress entries
with properties)

 – Azure queue storage: message queue service
 – Azure blobs/drives: blob/fi le storage, NTFS volumes

• SQL Azure : SQL server in the cloud with highly available and scalable relational
database

• Azure Business Analytics: create reports with tables, charts, maps, etc.
• Azure Caching: distributed, in-memory, application cache

 Fig. 14.4 Azure architecture [20]

A.K. Muppalla et al.

319

14.4.2 Google App Engine

 Google App Engine is a Platform-as-a-Service (PaaS) cloud-computing delivery
model for developing and hosting Web applications in Google-managed data cen-
ters. Applications are sandboxed and run across multiple servers [21]. App Engine
offers automatic scaling for Web applications—as the number of requests increases
for an application, App Engine automatically allocates more resources for the Web
application to handle the additional demand [22]. Figure 14.5 represents the high-
level architecture of Google App Engine outlining the structure to aid application
development.

14.4.2.1 Salient Features of App Engine

• Leading Java and Python public cloud service
• App Engine instances:

 – Hosting the applications
 – Fully managed sandboxes (not VMs)
 – Provide CPU + RAM + storage + language run-time

• App Engine Backend:

 – Higher computing resources
 – Used for background processing

• App Engine data stores:

 – NoSQL schema less object database
 – Support transacts and a query engine (GQL)

 Fig. 14.5 Google App Engine architecture [20]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

320

• Cloud SQL: managed MySQL in App Engine
• Cloud Storage: store fi les as blobs and fi les with REST API
• MapReduce API: highly scalable parallel computing API for heavy computing

tasks (based on Hadoop)
• Channel API: push notifi cation for JavaScript applications
• Task Queues: execution of background services
• Memchache : distributed in-memory data cache

14.4.3 Amazon Web Services (AWS)

 This is a collection of remote computing services (also called Web services) which
constitute the cloud-computing platform provided by Amazon. Figure 14.6 repre-
sents the aggregation of wide range of features that support cloud application devel-
opment on Amazon framework.

14.4.3.1 Salient Features of AWS

• Amazon Elastic Compute Cloud (Amazon EC2):

 – Virtual machines on-demand running Windows/Linux/other OS
 – Geographically distributed
 – Elastic IP addresses: a user can programmatically map an Elastic IP address

to any virtual machine instance without a network administrator’s help and
without having to wait for DNS to propagate the new binding

• Amazon Elastic Block Store (Amazon EBS):

 – Virtual HDD volumes
 – Used with EC2 to keep the OS fi le system

 Fig. 14.6 AWS architecture [20]

A.K. Muppalla et al.

321

• Amazon Simple Storage Service (Amazon S3):

 – Host binary data (images, videos, fi les, etc.)
 – REST API for access via Web

• Amazon DynamoDB /SimpleDB:

 – Managed NoSql cloud database
 – Highly scalable and fault tolerant

• Amazon Relational Database Service (RDS):

 – Managed MySQL and Oracle databases
 – Scalability, automated backup, replication

• Other services:

 – SQS: message queue
 – CloudFront : content delivery network
 – ElastiCache: caching
 – Route 53: Cloud DNS
 – SES: email

14.5 Comparison of AWS and Windows Azure:
Applications Development

 While deploying an initial Web application on the cloud, care is taken to leverage
the niche technologies provided by the environment. This section performs a com-
parative analysis of the above-mentioned features in building a Web application on
Amazon Web Services against Windows Azure.

14.5.1 Local Application Development Setup

 Apache is an application server with development in PHP and storage in MySQL
database. Figure 14.7 depicts the primary setup.

14.5.2 Migrating to the Cloud

 AWS : In AWS, this means an Amazon EC2 Instance, an Elastic IP, and backups to
the Amazon S3 storage service.

 Windows Azure : In Windows Azure, the counterpart to EC2 is Windows
Azure Compute. Specify a role (hosting container) and number of VM instances.

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

322

Choose a worker role (the right container for running Apache) and one VM instance.
Upload metadata and an application package, from which Windows Azure Compute,
Windows Server VM instance is created. An input endpoint is defi ned which
provides accessibility to the Web site. Backups are made to the Windows Azure
Storage service in the form of blobs or data tables.

14.5.3 Design for Failure

 Keep application logs and static data outside of the VM server by using a cloud
storage service. Make use of database snapshots, which can be mapped to look like
drive volumes as in Figs. 14.8 and 14.9 .

 AWS : The logs and static data are kept in the Amazon S3 storage service. Root
and data snapshot drive volumes are made available to the VM server using the
Amazon Elastic Block Service (EBS).

 Windows Azure : Logs and static data are written to the Windows Azure Storage
service in the form of blobs or tables. For snapshots, a blob can be mapped as a drive
volume using the Windows Azure Drive service. As for the root volume of the VM,
this is created from the Windows Azure Compute deployment just as in the previous
confi guration.

 Fig. 14.7 Local application
setup [23]

A.K. Muppalla et al.

323

14.5.4 Content Caching

 Take advantage of edge caching of static content. Use content distribution network
to serve up content such as images and video based on user location as in Fig. 14.10 .

 AWS : Amazon CloudFront is the content distribution network.
 Windows Azure : The Windows Azure Content Delivery Network (CDN) can

serve up blob content using a network of 24+ edge servers around the world.

 Fig. 14.8 Application deployment in AWS and Azure [23]

 Fig. 14.9 Updated fi gure—design for failure [23]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

324

14.5.5 Scaling Database

 In preparing to scale, the setup must move beyond a self-hosted database on a single
VM server instance. By using a database service outside of the compute VM, use
multiple compute VMs without regard for data loss as in Fig. 14.11 .

 AWS : The Amazon Relational Database Service (RDS) provides a managed data-
base. Andy can continue to use MySQL.

 Windows Azure : Switch over to SQL Azure, Microsoft’s managed database
service. Data is automatically replicated such that there are three copies of the
database.

14.5.6 Scaling Compute

 With a scalable data, scale the compute tier, which is accomplished by running
multiple instances as in Fig. 14.12 .

 AWS : Multiple instances of EC2 through the use of an Auto-Scaling Group.
Load-balancing Web traffi c to the instances by adding an Elastic Load Balancer
(ELB).

 Windows Azure : The input endpoint comes with a load balancer. The worker role
is a scale group—its instances can be expanded or reduced, interactively or program-
matically. The only change that needs to be made is to increase the worker roles
instance count; a change can be made in the Windows Azure management portal.

 Fig. 14.10 Updated fi gure—caching static content [23]

A.K. Muppalla et al.

325

14.5.7 Failover

 To keep the service up and running in the face of failures, one must take advantage
of failover infrastructure as in Fig. 14.13 .

 AWS : The primary Amazon RDS database domain has a standby slave domain.
The solution can survive the failure of either domain.

 Fig. 14.11 Updated fi gure—database service [23]

 Fig. 14.12 Updated deployment—compute elasticity [23]

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

326

 Windows Azure : The Windows Azure infrastructure has been providing fault
domains all along. Storage, database, and compute are spread across the data center
to prevent any single failure from taking out all of an application’s resources. At the
storage and database level, replication, failover, and synchronization are automatic.
Since the compute was only one instance, this could be a possible hurdle, which can
be addressed by running at least two instances in every role.

14.6 Future Research

 The future of cloud computing continues to show promise and gain popularity. One
should be able to plug in an application to the cloud in order to receive the power it
needs to run, just like a utility. As an architect, you will manage abstract compute,
storage, and network resources instead of physical servers. Scalability, security,
high availability, fault tolerance, testability, and elasticity will be confi gurable prop-
erties of the application architecture and will be an automated and intrinsic part of
the platform on which they are built.

 However, we are not there yet. Today, you can build applications in the cloud
with some of these qualities by implementing the best practices highlighted in this
chapter. Best practices in cloud-computing architectures will continue to evolve,
and as researchers, we should focus not only on enhancing the cloud but also on
building tools, technologies, and processes that will make it easier for developers
and architects to plug in applications to the cloud easily.

 Fig. 14.13 Updated deployment—fault tolerant [23]

A.K. Muppalla et al.

327

 The challenge of transitioning from your local development environment seems
to bother every developer; it is diffi cult to transition from doing stuff locally and
trying it out to working in the cloud. The maturity of IDEs that can handle cloud
environment is still a work in progress as well. The more seamless the transition
from the local test environments to cloud-based environments, the more productive
the development cycles will be. Another challenge is data security; as the applica-
tion will be hosted on third-party infrastructure, the safety of the data is always at
risk. There is a greater need to address this necessity both at the application level
and infrastructure level.

14.7 Conclusion

 Cloud-based application development process has its share of advantages and dis-
advantages, but many of the inherent issues are alleviated by following the basic
design patterns and frameworks described in this chapter.

 We can enumerate the reasons to choose either of the frameworks mentioned,
clearly because the type of application that needs to be developed requires that right
kind of environment. Reasons to use GAE (Google App Engine) are:

• You don’t need to pay until you see a visible need to scale.
• Google services like Gmail and Calendar plug in are very easy.
• Good choice if Python or Java is used as a language.
• Locally tested app runs as is on GAE.
• Allows running multiple versions of on the same data store.

 Reasons to use Azure are:

• Better suited for SOA (Service-Oriented Architecture)-based applications
• Application staging feature helps during deployment
• Two storage solutions—SQL Azure (relational) and Azure Storage

(non-relational)
• Best suitable for .NET-based applications

 Reasons to use Amazon Web Services are:

• Have footprint across several Linux distributions and also Windows support,
while Azure allows Windows only

• Have support for myriad language platforms like C#, PHP, ASP.NET, Python,
and Ruby

• Provide off-the-shelf load balancing, varying storage sizes to instances, and
install custom software

 While making the choice of a platform, several reasons, as listed above, need to
be considered to aid in the effi cient cloud application development.

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

328

 References

 1. Cloud computing: http://en.wikipedia.org/wiki/Cloud_computing (2008)
 2. Nytimes: Software via the Internet: Microsoft in ‘cloud’ computing Microsoft Corporation.

 http://www.nytimes.com/2007/09/03/technology/03cloud.html (2007)
 3. Baker, S.: Google and the wisdom of clouds. http://www.businessweek.com/magazine/

content/07_52/b4064048925836.htm (2007)
 4. Big blue goes for the big win: http://www.businessweek.com/magazine/content/08_10/

b4074063309405.htm (2009)
 5. Armbrust, M., Fox, A., Griffi th, R.: A view of cloud computing. Commun. ACM 53 (4), 50–58

(2010)
 6. Chellappa, R.: Cloud computing: emerging paradigm for computing. In: INFORMS 1997,

Dallas, TX (1997)
 7. Benatallah, B., Dijkman, R.M., Dumas, M., Maamer, Z.: Service-composition: concepts, tech-

niques, tools and trends. In: Z. Stojanovic, A. Dahanayake (eds) Service-Oriented Software
System Engineering: Challenges and Practices, pp. 48–66. Idea Group, Hershey (2005)

 8. Stevens, M.: Service-oriented architecture introduction. http://www.developer.com/services/
article.php/1010451 (2009)

 9. Service orientation and its role in your connected systems strategy. Microsoft Corporation.
 http://msdn.microsoft.com/en-us/library/ms954826.aspx (2004)

 10. Buyya, R.: Economic-based distributed resource management and scheduling for grid
computing. Ph.D. thesis, Chapter 2. Monash University, Melbourne (2002)

 11. Dell cloud computing solutions: http://www.dell.com/cloudcomputing (2008)
 12. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual orga-

nization. Int. J. High Perform. Comput. Appl. 15 (3), 200–222 (2001)
 13. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable cloud computing

environments and the Cloudsim toolkit: challenges and opportunities in high performance
computing\& simulation. In: HPCS’09. International Conference (2009)

 14. Hadoop: http://hadoop.apache.org/ (2007)
 15. Bondi, A.B.: Characteristics of scalability and their impact on performance. In: Proceedings of

the 2nd International Workshop on Software and Performance, Ottawa, ON, Canada, ISBN
1-58113-195-X, pp. 195–203 (2000)

 16. Lu, W., Jackson, J., Barga, R.: Azureblast: a case study of developing science applications on
the cloud. In: Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing. ACM, New York (2010)

 17. Fehling, C., Leymann, F., Mietzner, R., Schupeck, W.: A Collection of Patterns for Cloud
Types, Cloud Service Models, and Cloud-Based Application Architectures in Institute
Architecture of Application Systems (IAAS) Report, Daimler A G (2011)

 18. Load balancing and MapReduce: http://www.ibm.com/developerworks/cloud/library/
cl- mapreduce (2011)

 19. Chappell, D., Windows Azure and ISVs, Technical report, Microsoft: http://www.microsoft.
com/windowsazure/whitepapers (2009)

 20. Svetin Nakov: Cloud for Developers Azure vs Google App Engine vs Amazon vs Appharbor,
slideshare.com (2012)

 21. Google: Python Runtime Environment, Google App Engine, Google Code, code.google.com
(2011)

 22. Sanderson, D.: Programming Google App Engine: Build and Run Scalable Web Apps on
Google’s Infrastructure. O’Reilly Media, Sebastopol (2009). ISBN 978-0-596-52272-8

 23. David: Comparative study of AWS and Azure. http://davidpallmann.blogspot.in/2011_03_01_
archive.html (2011). Accessed 23 Aug 2012

 24. Microsoft Documentation: http://msdn.microsoft.com
 25. User Blogs, Microsoft Documentation: http://blogs.msdn.com

A.K. Muppalla et al.

http://en.wikipedia.org/wiki/Cloud_computing
http://www.nytimes.com/2007/09/03/technology/03cloud.html
http://www.businessweek.com/magazine/content/07_52/b4064048925836.htm
http://www.businessweek.com/magazine/content/07_52/b4064048925836.htm
http://www.businessweek.com/magazine/content/08_10/b4074063309405.htm
http://www.businessweek.com/magazine/content/08_10/b4074063309405.htm
http://www.developer.com/services/article.php/1010451
http://www.developer.com/services/article.php/1010451
http://msdn.microsoft.com/en-us/library/ms954826.aspx
http://www.dell.com/cloudcomputing
http://hadoop.apache.org/
http://www.ibm.com/developerworks/cloud/library/cl-mapreduce
http://www.ibm.com/developerworks/cloud/library/cl-mapreduce
http://www.microsoft.com/windowsazure/whitepapers
http://www.microsoft.com/windowsazure/whitepapers
http://davidpallmann.blogspot.in/2011_03_01_archive.html
http://davidpallmann.blogspot.in/2011_03_01_archive.html
http://msdn.microsoft.com/
http://blogs.msdn.com/

329

 26. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign
language for data processing. In: SIGMOD’08: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM, New York (2008)

 27. Talasila, S., Pavan, K.I.: A generalized cloud storage architecture with backup technology for
any cloud providers. Int. J. Comput. Appl. 2 (2), 256–263 (2012)

14 Effi cient Practices and Frameworks for Cloud- Based Application Development

331Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2_15, © Springer-Verlag London 2013

Abstract Cloud Computing is an emerging technology for processing and storing
large amounts of data. One of its most important challenges is to deliver good
performance to its end users. Sometimes, anomalies affect a part of the Cloud
infrastructure, resulting in degradation in Cloud performance. These anomalies can
be identified by performance concepts of Cloud Computing based on software
engineering quality models. This work presents these Cloud Computing concepts
that are directly related to the measurement of performance from a quantitative
viewpoint. One of the challenges in defining such concepts has been to determine
what type of relationship exists between the various base measurements that
define the performance concepts in a Cloud environment. For example, what is the
extent of the relationship between CPU processing time and amount of information
to process by a Cloud Computing application? This work uses the Taguchi method
for the design of experiments to present a methodology for identifying the relation-
ships between the various configuration parameters (base measures) that affect
the quality of Cloud Computing applications’ performance. This chapter is based
on a proposed performance measurement framework for Cloud Computing
systems, which integrates software quality concepts from ISO 25010 and other
international standards.

Chapter 15
A Methodology for Identifying the Relationships
Between Performance Factors for Cloud
Computing Applications

Luis Eduardo Bautista Villalpando, Alain April, and Alain Abran

L.E.B. Villalpando (*)
Department of Electronic Systems, Autonomous University of Aguascalientes,
Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Mexico
e-mail: lebautis@correo.uaa.mx

Department of Software Engineering and Information Technology,
ETS – University of Quebec, 1100 Notre-Dame St, Montreal, Canada

A. April • A. Abran
Department of Software Engineering and Information Technology,
ETS – University of Quebec, 1100 Notre-Dame St, Montreal, Canada

332

Keywords Cloud Computing • Measurement • Performance • Taguchi method •
ISO 25010 • Maintenance • Hadoop • MapReduce

15.1 Introduction

Cloud Computing (CC) is an emerging technology aimed at processing and storing
large amounts of data. It is an Internet-based technology in which a number of dis-
tributed computers work together to efficiently process such quantities of informa-
tion while at the same time rapidly processing query results for users. Some CC
users prefer not to own physical infrastructure, but instead rent Cloud infrastructure,
or a Cloud platform or software, from a third-party provider. These infrastructure
application options delivered as a service are known as Cloud Services [1].

One of the most important challenges in delivering Cloud Services is to ensure
that they are fault tolerant, as failures and anomalies can degrade these services and
impact their quality, and even their availability. According to Coulouris [2], a failure
occurs in a distributed system (DS), like a CC system (CCS), when a process or a
communication channel departs from what is considered to be its normal or desired
behavior. An anomaly is different, in that it slows down a part of a CCS without
making it fail completely, impacting the performance of tasks within nodes, and,
consequently, of the system itself.

According to the ISO SC38 Study Group on Cloud Computing [3], service mod-
els for CC are categorized as Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). The model that relates the most to the
software engineering community is the SaaS model. Software engineers focus on
software components, and customers use an IT provider’s applications running on a
Cloud infrastructure to process information according to their processing and stor-
age requirements. One of the main characteristics of this type of service is that
customers do not manage or control the underlying Cloud infrastructure (including
network, servers, operating systems, and storage), except for limited user-specific
application configuration settings.

Consequently, a performance measurement model (PMMo) for CCS, and more
specifically for Cloud Computing applications (CCA), should propose a means to
identify and quantify “normal application behavior,” which can serve as a baseline
for detecting and predicting possible anomalies in the software (i.e., jobs in a Cloud
environment) that may impact Cloud application performance. To achieve this goal,
methods are needed to collect the necessary base measures specific to CCA perfor-
mance, and analysis models must be designed to analyze and evaluate the relation-
ships that exist among these measures.

The ISO International Vocabulary of Metrology (VIM) [4] and ISO 15939 docu-
ment the consensus that exists on the following definitions:

• A measurement method is a generic description of a logical organization of oper-
ations used in measurement.

L.E.B. Villalpando et al.

333

• An analysis model is an algorithm or calculation combining one or more mea-
sures obtained from a measurement method to produce evaluations or estimates
relevant to the information needed for decision making.

The purpose of a measurement process, as described in ISO 15939 [5], is to col-
lect, analyze, and report data relating to the products developed and processes
implemented in an organizational unit, both to support effective management of the
process and to objectively demonstrate the quality of the products.

ISO 15939 [5] defines four sequential activities in a measurement process: estab-
lish and sustain measurement commitment, plan the measurement process, perform
the measurement process, and evaluate the measurement. These activities are per-
formed in an iterative cycle that allows for continuous feedback and improvement
of the measurement process, as shown in Fig. 15.1.

The first two activities recommended by the ISO 15939 measurement process,
which are to (1) establish measurement commitment and (2) plan the measurement
process, were addressed in the work, “Design of a Performance Measurement
Framework for Cloud Computing” (PMFCC) [6]. In this work, the basis for the
measurement of Cloud Computing concepts that are directly related to performance
is defined. The PMFCC identifies terms associated with the quality concept of per-
formance, which have been identified from international standards such as ISO
25010 and those of the European Cooperation on Space Standardization. The
PMFCC proposes a combination of base measures to determine the derived mea-
sures of a specific concept that contributes to performance analysis.

One of the main challenges in designing the PMFCC has been to determine what
type of relationship exists between the various base measures. For example, what is
the extent of the relationship between CPU processing time and amount of informa-
tion to process? In this present work, we propose the use of a methodology based on
the Taguchi method to determine how closely the performance parameters (base
measures) involved in the performance analysis process are related. In addition, we
address the other activities recommended by the ISO 15939 measurement process,

Fig. 15.1 Sequence of activities in a measurement process (Adapted from the ISO 15939 mea-
surement process model [5])

15 A Methodology for Identifying the Relationships Between Performance Factors…

334

which are to (3) perform the measurement process and (4) evaluate the measure-
ment process, which we do based on our PMFCC.

This chapter is structured as follows. Section 15.2 presents a literature review
related to the performance measurement of CCA and computer-based systems
(CBS) and introduces the MapReduce framework, which is used to develop CCA.
Also, Sect. 15.2 presents our PMFCC [6], which describes the performance
concepts and subconcepts identified from the international standards. Section 15.3
presents a methodology for examining the relationships among the performance
concepts identified in the PMFCC. This methodology is based on the Taguchi
method of experimental design, which offers a means for improving the quality of
product performance. Section 15.4 presents an experiment and its results which are
based on the methodology introduced previously. Finally, Sect. 15.5 presents a
summary of this chapter and suggests future work in this area of study.

15.2 Literature Review

15.2.1 Performance Measurement Approaches

The measurement of CBS performance has been investigated in the computer
science literature from the following viewpoints: load balancing, network intrusion
detection, and host state maintenance. For example, Burgess [7] defines system
performance as “normal behavior” and proposes that this behavior can only be
determined by learning about past events and by modeling future behavior using
statistics from the past and observing present behavior. According to Burgess,
modern computing systems are complex. They are composed of many interacting
subsystems, which make their collective behavior intricate, and this behavior
influences the performance of the whole system.

Some authors have attempted to predict the performance of complex systems
(i.e., computer clusters) by simulating cluster behavior in a virtual environment.
Rao [8], for example, estimates the variation of cluster performance through changes
in task size as well as the time taken to solve a particular problem. He has also built
a predictive model using regression analysis to investigate the behavior of the system
and predict the performance of the cluster.

Other published approaches have focused on the reliability aspects of large,
high-performance CBS to measure system performance. Smith [9] observes that
failure occurrence has an impact on both system performance and operational costs.
He proposes an automatic mechanism for anomaly detection aimed at identifying
the root causes of anomalies and faults. Smith [9] has also developed an automatic
anomaly detection framework designed to process massive volumes of data using a
technique based on pattern recognition. In a case study, Smith identifies health-
related variables, which are then used for anomaly detection. Each of these vari-
ables is related to a system characteristic (such as user utilization, CPU idle time,
memory utilization, I/O volume operations). Once the measurement data have been

L.E.B. Villalpando et al.

335

collected, he proposes clustering categories, where an outlier detector identifies the
nodes that potentially have anomalies. Finally, a list of those possible anomalies is
sent to a system administrator who has the expertise to quickly confirm whether or
not an anomaly exists.

15.2.2 Performance Analysis in Cloud Computing Applications

Researchers have analyzed the performance of CCA from various viewpoints. For
example, Jackson [10] analyzes high-performance computing applications on the
Amazon Web Services’ Cloud. The purpose of his work was to examine the perfor-
mance of existing CC infrastructures and create a mechanism to quantitatively eval-
uate them. The work is focused on the performance of Amazon EC2, as representative
of the current mainstream of commercial CC services, and its applicability to
Cloud-based environments for scientific computing. To do so, Jackson quantita-
tively examines the performance of a set of benchmarks designed to represent a
typical High-Performance Computing (HPC) workload running on the Amazon
EC2 platform. Timing results from different application benchmarks are used to
compute the Sustained System Performance (SSP) metric to measure the perfor-
mance delivered by the workload of a computing system. According to the National
Energy Research Scientific Computing Center (NERSC) [11], SSP provides a pro-
cess for evaluating system performance across any time frame and can be applied to
any set of systems, any workload, and/or benchmark suite and for any time period.
The SSP measures time to solution across different application areas and can be
used to evaluate absolute performance and performance relative to cost (in dollars,
energy, or other value propositions). The results show a strong correlation between
the percentage of time an application spends communicating and its overall perfor-
mance on EC2. The more communication there is, the worse the performance
becomes. Jackson also concludes that the communication pattern of an application
can have a significant impact on performance.

Other researchers focus on applications in virtualized Cloud environments. For
instance, Mei [12] studies performance measurement and analysis of network I/O
applications (network-intensive applications) in a virtualized Cloud. The aim of his
work is to understand the performance impact of co-locating applications in a virtu-
alized Cloud, in terms of throughput performance and resource-sharing effective-
ness. Mei addresses issues related to managing idle instances, which are processes
running in an operating system (OS) that are executing idle loops. Results show that
when two identical I/O applications are running together, schedulers can approxi-
mately guarantee that each has its fair share of CPU slicing, network bandwidth
consumption, and resulting throughput. They also show that the duration of perfor-
mance degradation experienced is related to machine capacity, workload level in the
running domain, and number of new virtual machine (VM) instances to start up.

Although these works present interesting methods for performance measurement
of CCA, their approach is from an infrastructure standpoint and does not consider

15 A Methodology for Identifying the Relationships Between Performance Factors…

336

CCA performance factors from a software engineering perspective. Consequently,
we focus next on the performance evaluation of CCA, which we have developed
through frameworks for data-intensive processing like Hadoop MapReduce, and by
integrating software quality concepts from ISO 25010 and frameworks for CCS
performance measurement.

15.2.3 Hadoop MapReduce

Hadoop is the Apache Software Foundation’s top-level project and encompasses the
various Hadoop subprojects. The Hadoop project provides and supports the devel-
opment of open-source software that supplies a framework for the development of
highly scalable distributed computing applications designed to handle processing
details, leaving developers free to focus on application logic [13]. Hadoop is divided
into several subprojects that fall under the umbrella of infrastructures for distributed
computing. One of these subprojects is MapReduce, which is a programming model
with an associated implementation, both developed by Google for processing and
generating large datasets.

According to Dean [14], programs written in this functional style are automati-
cally parallelized and executed on a large cluster of commodity machines. Authors
like Lin [15] point out that today the issue of tackling large amounts of data is
addressed by a divide-and-conquer approach, the basic idea being to partition a
large problem into smaller subproblems. Those subproblems can be handled in par-
allel by different workers, for example, threads in a processor core, cores in a multi-
core processor, multiple processors in a machine, or many machines in a cluster. In
this way, the intermediate results of each individual worker are then combined to
yield the final output.

The Hadoop MapReduce model results are obtained in two main stages: (1) the
Map stage and (2) the Reduce stage. In the Map stage, also called the mapping
phase, data elements from a list of such elements are inputted, one at time, to a func-
tion called Mapper, which transforms each element individually into an output data
element. Figure 15.2 presents the components of the Map stage process.

The Reduce stage, also called the reducing phase, aggregates values. In this
stage, a reducer function receives input values iteratively from an input list.

Input list

Mapping Function

Output list

Fig. 15.2 The mapping phase, in which an output list is created

L.E.B. Villalpando et al.

337

This function combines these values, returning a single output value. The Reduce
stage is often used to produce “summary” data, turning a large volume of data into a
smaller summary of itself. Figure 15.3 presents the components of the Reduce stage.

MapReduce inputs typically come from input files stored in a Hadoop Distributed
File System (HDFS) cluster. These files are distributed across all the commodity
computers that are running HDFS nodes (nodes being computers that are running
the HDFS). Commodity computers are computer systems manufactured by multiple
vendors, incorporating components based on open standards.

According to Yahoo! [16], when a mapping phase begins, any mapper (node) can
process any input file or part of an input file. In this way, each mapper loads a set of
local files to be able to process them.

When a mapping phase has been completed, an intermediate pair of values (con-
sisting of a key and a value) must be exchanged between machines, so that all values
with the same key are sent to a single reducer. Like Map tasks, Reduce tasks are
spread across the same nodes in the cluster and do not exchange information with
one another, nor are they aware of one another’s existence. Thus, all data transfer is
handled by the Hadoop MapReduce platform itself, guided implicitly by the various
keys associated with the values. Figure 15.4 shows a high-level dataflow into the
MapReduce tasks.

Dean [14] explains that Map invocations are distributed across multiple machines
by automatically partitioning the input data into a set of splits, M, and so, when a
user application calls on the MapReduce application, a sequence of actions
(Fig. 15.5) occurs in a MapReduce cluster. These actions are presented below, in the
form of direct quotations from Dean’s work:

 1. The MapReduce library in the user program first splits the input files into M
pieces, typically 16 megabytes to 64 megabytes (MB) per piece. It then starts up
many copies of the program on a cluster of machines.

 2. One of the copies is special – the master. The rest are workers that are assigned
work by the master. There are M Map tasks and R Reduce tasks to assign. The
master picks idle workers and assigns each one a Map task or a Reduce task.

 3. A worker who is assigned a Map task reads the content of the corresponding
input split. It parses key/value pairs out of the input data and passes each pair to
the user-defined Map function. The intermediate key/value pairs produced by the
Map function are buffered in memory.

Input list

Reducing
function

Output value

Fig. 15.3 The components
of the reducing phase

15 A Methodology for Identifying the Relationships Between Performance Factors…

338

 4. Periodically, the buffered pairs are written to a local disk, partitioned into R
regions by the partitioning function. The locations of these buffered pairs on the
local disk are passed back to the master, who is responsible for forwarding these
locations to the reduce workers.

 5. When a reduce worker is notified by the master about these locations, it uses
remote procedure calls to read the buffered data from the local disks of the map
workers. When a reduce worker has read all the intermediate data, it sorts them
by the intermediate keys, so that all occurrences of the same key are grouped
together. The sorting is needed because typically many different keys map to the
same Reduce task. If the amount of intermediate data is too large to fit in mem-
ory, an external sort is used.

 6. The reduce worker iterates over the sorted intermediate data, and, for each
unique intermediate key encountered, it passes the key and the corresponding set
of intermediate values to the user’s Reduce function. The output of the Reduce
function is appended to a final output file for its reduce partition.

 7. When all Map tasks and Reduce tasks have been completed, the master wakes up
the user program. At this point, the MapReduce call in the user program returns
back to the user code.

Figure 15.5 presents a summary of the actions that occur during a MapReduce
application execution.

Local input data

Node 1 Node 2

Node 2Node 1

Local input data

Mapping
Process

Intermediate data
from mappers

Values exchanged
by shuffle process

Intermediate
exchanged data

Reducing
Process

Outputs stored
locally

Mapping
Process

Intermediate data
from mappers

Values exchanged
by the shuffle

process

Intermediate
exchanged data

Reducing
Process

Outputs stored
locally

Fig. 15.4 High-level data flow into the MapReduce stages

L.E.B. Villalpando et al.

339

15.2.4 ISO 25030 Performance Concepts as System
Requirements

The ISO 25030 standard [17] defines quality requirements and states that systems
have a variety of stakeholders who may have an interest in the system throughout its
life cycle. Stakeholders include end users, organizations, developers, and maintain-
ers, who have a legitimate interest in the system. Stakeholders have different needs
and expectations of the system, and these may change during the system’s life cycle.
Stakeholder needs can be either explicitly stated or only implied, and sometimes
they are unclear. Performance requirements need to be established and should be
expressed, in order to ensure that a specific system will be able to perform an effi-
cient and reliable service under stated conditions. ISO 19759 – Guide to the Software
Engineering Body of Knowledge (SWEBOK) [18] defines a requirement as a prop-
erty that must be exhibited in order to solve real-world problems.

According to ISO 25030, stakeholders’ needs and expectations can be identified
through requirements and can be transformed into technical views of system
requirements through a design process that can be used to realize the intended
system. Technical views of user requirements are often called system require-
ments. These should state which characteristics the system is to have, and be

Elements allocated
by Master

Input files
(Splits)

User
application

Application
copy

Intermediate files
(on local disks)

Application
copy

Worker
(Reduce Task)

Worker
(Reduce Task)

Worker
(Map Task)

Worker
(Map Task)

Worker
(Map Task)

Master
(Job Tracker)

Allocates Map and
Reduce Tasks

Output files
(results)

Reduce Phase

Map Phase

Fig. 15.5 Summary of actions occurring during a MapReduce application execution

15 A Methodology for Identifying the Relationships Between Performance Factors…

340

verifiable, in order to satisfy the stakeholder’s user requirements, which are defined
as perceived needs.

ISO 25030 mentions that a system consists of a number of interacting elements
that can be defined and categorized in different ways, and system requirements can,
for example, include requirements for software, computer hardware, and mechanical
systems. Section 15.2.5 indentifies the system requirements that are involved in the
analysis of CCA performance.

15.2.5 Jain’s System Performance Concepts and Subconcepts

A well-known perspective for system performance measurement was proposed
by Jain [19], who maintains that a performance study must first establish a set of
performance criteria (or characteristics) to help to carry out the system measure-
ment process. He notes that system performance is typically measured using
three subconcepts if it is performing a service correctly, (1) responsiveness,
(2) productivity, and (3) utilization, and proposes a measurement process for
each. In addition, Jain notes that there are several possible outcomes for each
service request made to a system, which can be classified into three categories.
The system may (1) perform the service correctly, (2) perform the service incor-
rectly, or (3) refuse to perform the service altogether. Moreover, he defines three
subconcepts associated with each of these possible outcomes which affect
system performance: (1) speed, (2) reliability, and (3) availability. Figure 15.6
presents the possible outcomes of a service request to a system and the subconcepts
associated with them.

Fig. 15.6 Possible outcomes of a service request to a system, according to Jain [19]

L.E.B. Villalpando et al.

341

15.2.6 ISO 25010 Performance Concepts and Subconcepts

There are several software engineering standards on system and software quality
models, such as ISO 25010 [20], which is a revision of the ISO 9126-1 [21] soft-
ware quality model. The ISO 25010 standard defines software product and com-
puter system quality from two distinct perspectives: (1) a quality in use model and
(2) a product quality model:

 1. The quality in use model is composed of five characteristics that relate to the
outcome of an interaction when a product is used in a particular context of use.
This quality model is applicable to the entire range of use of the human- computer
system, including both systems and software.

 2. The product quality model is composed of eight characteristics that relate to the
static properties of software and the dynamic properties of the computer system.

This product quality model is applicable to both systems and software. According
to ISO 25010, the properties of both determine the quality of the product in a par-
ticular context, based on user requirements. For example, performance efficiency
and reliability can be specific concerns of users who specialize in areas of content
delivery, management, or maintenance. The performance efficiency concept
proposed in ISO 25010 has three subconcepts, (1) time behavior, (2) resource
utilization, and (3) capacity, while the reliability concept has four subconcepts:
(1) maturity, (2) availability, (3) fault tolerance, and (4) recoverability. In this
research, we have selected performance efficiency and reliability as concepts for
determining the performance of CCA.

Based on the performance perspectives presented by Jain and the product quality
characteristics defined by ISO 25010, we propose the following definition of CCA
performance measurement: “The performance of a Cloud Computing application is
determined by analysis of the characteristics involved in performing an efficient and
reliable service that meets requirements under stated conditions and within the
maximum limits of the system parameters.”

Although at first sight this definition may seem complex, it only includes the
subconcepts necessary to carry out CCA performance analysis. Furthermore, from
the literature review, a number of subconcepts have been identified that could be
directly related to the concept of performance, such as:

• Performance efficiency: The amount of resources used under stated conditions.
Resources can include software products, the software and hardware configura-
tion of the system, and materials.

• Time behavior: The degree to which the response and processing times and the
throughput rates of a product or system, when performing its functions, meet
requirements.

• Capacity: The degree to which the maximum limits of a product or system
parameter meet requirements.

• Resource utilization: The degree to which the amounts and types of resources
used by a product or system when performing its functions meet requirements.

15 A Methodology for Identifying the Relationships Between Performance Factors…

342

• Reliability: The degree to which a system, product, or component performs spec-
ified functions under specified conditions for a specified period of time.

• Maturity: The degree to which a system meets needs for reliability under normal
operation.

• Availability: The degree to which a system, product, or component is operational
and accessible when required for use.

• Fault tolerance: The degree to which a system, product, or component operates
as intended, in spite of the presence of hardware or software faults.

• Recoverability: The degree to which a product or system can recover data directly
affected in the event of an interruption or a failure and be restored to the desired
state.

15.2.7 Relationship Between Performance Measurement
Concepts and Subconcepts

Now that the performance measurement concepts and subconcepts have been intro-
duced, a relationship model will be helpful to show the relationship between the
performance concepts proposed by ISO 25010 and the performance measurement
perspective presented by Jain. In addition, this model shows the logical sequence in
which the concepts and subconcepts appear when a performance issue arises in a
CCS (see Fig. 15.7).

In Fig. 15.7, system performance is determined by two main subconcepts: (1)
performance efficiency and (2) reliability. We have seen that when a CCS receives a
service request, there are three possible outcomes (the service is performed cor-
rectly, the service is performed incorrectly, or the service cannot be performed). The
outcome will determine the subconcepts that will be applied for performance mea-
surement. For example, suppose that the CCS performs a service correctly, but,
during its execution, the service failed and was later reinstated. Although the service
was ultimately performed successfully, it is clear that the system availability (part of
the reliability subconcept) was compromised, and this affected CCS performance.

The foundation for the PMFCC [6] was the above relationship model (Fig. 15.7).
This performance measurement framework defines the base measures related to the
performance concepts that represent the system attributes and which can be mea-
sured to assess whether or not the CCA satisfies the stated requirements from a
quantitative viewpoint. These terms are grouped into collection functions, which are
responsible for conducting the measurement process using a combination of base
measures through a data collector. They are associated with the corresponding ISO
25010 quality derived measures, as presented in Table 15.1.

The base measures presented in Table 15.1 are categorized as collection func-
tions in the PMFCC (see Fig. 15.8). These functions were designed to be intercon-
nected through an intermediate service (IS) that shares intermediate results from
common base measures, reducing the number of operations in the measurement
process at the time of calculation.

L.E.B. Villalpando et al.

343

Performance

Service request

Service performed

Correctly (SLA)
Incorrectly

(Anomalies)

Performance efficiency

Time
Behavior

Resource
Utilization

Capacity

Reliability

Maturity
Recovera

-bility
Availability

Fault
Tolerance

System
unable to

perform the
service

(Failure)

Fig. 15.7 Model of the relationships between performance concepts and subconcepts

Table 15.1 Functions associated with Cloud Computing performance concepts

Base measures
Collection functions
for measures ISO 25010 derived measures

Failures avoided Failure function Maturity
Failures detected Resource utilization
Failures predicted Fault tolerance
Failures resolved
Breakdowns Fault function Maturity
Faults corrected
Faults detected Maturity
Faults predicted
Tasks entered into recovery Task function Availability
Tasks executed Capacity
Tasks passed Maturity
Tasks restarted Fault tolerance
Tasks restored Resource utilization
Tasks successfully restored Time behavior
Continuous resource utilization time Time function Availability
Downtime
Maximum response time Capacity

(continued)

15 A Methodology for Identifying the Relationships Between Performance Factors…

344

Base

Measures

(Failures,

faults,

tasks,

errors,

etc.)

Storage
System

Task
function

Time
function

Transmission
function

Fault
function

Failure
function

Collection
Functions for

Measures

R

R

W

R

W

R

W

W

R

W

X

E

X

E

X

E

X

E

X

E

X

E

X

E

X

E

X

X

E

X

E

X

E

X

E
X

E

X

E

E

X

E
X

E

X

E

E

X

Derived Measures

Maturity

Fault Tolerance

Availability

Recoverability

Time Behavior

Resource
Utilization

Capacity

In
te

rm
ed

ia
te

 S
er

vi
ce

 (
IS

)

P
er

fo
rm

an
ce

 o
f

C
lo

u
d

 C
o

m
p

u
ti

n
g

 S
ys

te
m

User

Boundary

Fig. 15.8 Performance measurement framework for Cloud Computing

Base measures
Collection functions
for measures ISO 25010 derived measures

Observation time
Operation time Maturity
Recovery time
Repair time Recoverability
Response time
Task time Resource utilization
Time I/O devices occupied
Transmission response time Time behavior
Turnaround time
Transmission errors Transmission function Availability

Capacity
Transmission capacity Maturity

Recoverability
Transmission ratio Resource utilization

Time behavior

Table 15.1 (continued)

L.E.B. Villalpando et al.

345

How can we measure the CCA availability concept (presented in Table 15.1)
using the PMFCC, for example? To start with, we need three collection functions:
(1) the time function, (2) the task function, and (3) the transmission function. The
time function can use several different measurements, such as CPU utilization by
the user, job duration, and response time. These base measures are obtained using a
data collector and then inputted to a time function that calculates a derived measure
of the time concept. The IS combines the results of each function to determine a
derived measure of the availability that contributes to CC performance, as defined
in the framework.

15.3 A Methodology to Analyze Relationships
Across Performance Factors

15.3.1 Definition of the Problem

To be able to design the proposed collection functions (presented in Fig. 15.8), we
need to determine how the various base measures are related and to what degree.
These relationships enable us to determine the influence each of them has in the
resulting derived measures. The PMFCC [6] shows many of the relationships that
exist between the base measures which have a major influence on the collection
functions. However, in CCA and more specifically in the Hadoop MapReduce
applications, there are over a 100 base measures (including system measures) which
could contribute to the analysis of CCA performance. A selection of these measures
has to be included in the collection functions so that the respective derived measures
can be obtained, and from there an indication of the performance of the applica-
tions. One key design problem is to establish which base measures are interrelated
and how much they contribute to each of the collection functions.

In traditional statistical methods, 30 or more observations (or data points) are
typically needed for each variable, in order to gain meaningful insight and analyze
the results. In addition, only a few independent variables are necessary to carry out
experiments to uncover potential relationships, and this must be performed under
certain predetermined and controlled test conditions. However, this approach is not
appropriate here, owing to the large number of variables involved and the time and
effort required, which is more than we have allowed for in this research for such
experiments. Consequently, we have to resort to an analysis method that is suited to
our specific problem and in our study area.

A possible candidate to solve this problem is Taguchi’s experimental design
method, which investigates how different variables affect the mean and variance of
a process performance characteristic and helps in determining how well the process
is functioning. This method proposes a limited number of experiments but is more
efficient than a factorial design in its ability to identify relationships and dependen-
cies. We present the method in the next section.

15 A Methodology for Identifying the Relationships Between Performance Factors…

346

15.3.2 Taguchi’s Method of Experimental Design

Taguchi’s Quality Engineering Handbook [22] describes the Taguchi method of
experimental design, which was developed by Dr. Genichi Taguchi, a researcher at
the Electronic Control Laboratory in Japan. This method combines industrial and
statistical experience and offers a means for improving the quality of manufactured
products. It is based on a “robust design” concept, according to which a well-
designed product should cause no problem when used under specified conditions.

According to Cheikhi [23], Taguchi’s two-phase quality strategy is the following:

• Phase 1: The online phase, which focuses on the techniques and methods used to
control quality during the production of the product.

• Phase 2: The offline phase, which focuses on taking those techniques and methods
into account before manufacturing the product, that is, during the design phase,
the development phase, etc.

One of the most important activities in the offline phase of the strategy is para-
meter design. This is where the parameters are determined that make it possible to
satisfy the set quality objectives (often called the objective function) through the use
of experimental designs under set conditions. If the product does not work properly
(does not fulfill the objective function), then the design constants (also called
parameters) need to be adjusted so that it will perform better. Cheikhi explains that
this activity includes five (5) steps, which are required to determine the parameters
that satisfy the quality objectives. These five steps are the following:

 1. Definition of the objective of the study, that is, identification of the quality char-
acteristics to be observed in the output (results expected).

 2. Identification of the study factors and their interactions, as well as the levels at
which they will be set. There are two different types of factors: (1) control
factors, factors that can be easily managed or adjusted, and (2) noise factors,
factors that are difficult to control or manage.

 3. Selection of the appropriate orthogonal arrays (OAs) for the study, based on the
number of factors, and their levels and interactions. The OA shows the various
experiments that will need to be conducted in order to verify the effect of the
factors studied on the quality characteristic to be observed in the output.

 4. Preparation and performance of the resulting OA experiments, including prepa-
ration of the data sheets for each OA experiment according to the combination of
the levels and factors for the experiment. For each experiment, a number of trials
are conducted and the quality characteristics of the output are observed.

 5. Analysis and interpretation of the experimental results to determine the optimum
settings for the control factors, and the influence of those factors on the quality
characteristics observed in the output.

According to Taguchi’s Quality Engineering Handbook [22], the OA organizes
the parameters affecting the process and the levels at which they should vary.
Taguchi’s method tests pairs of combinations, instead of having to test all possible

L.E.B. Villalpando et al.

347

combinations (as in a factorial experimental design). With this approach, we can
determine which factors affect product quality the most in a minimum number of
experiments.

Taguchi’s OA can be created manually or they can be derived from determin-
istic algorithms. They are selected by the number of parameters (variables) and
the number of levels (states). An OA is represented by Ln and Pn, where Ln
corresponds to the number of experiments to be conducted and Pn corresponds to
the number of parameters to be analyzed. Table 15.2 presents an example of
Taguchi OA L4, meaning that four experiments are conducted to analyze three
parameters.

An OA cell contains the factor levels (1 and 2), which determine the type of
parameter values for each experiment. Once the experimental design has been
determined and the trials have been carried out, the performance characteristic
measurements from each trial can be used to analyze the relative effect of the various
parameters.

Taguchi’s method is based on the use of the signal-to-noise ratio (SNR). The
SNR is a measurement scale that has been used in the communications industry for
nearly a century for determining the extent of the relationship between quality
factors in a measurement model [22]. The SNR approach involves the analysis
of data for variability in which an input-to-output relationship is studied in the
measurement system. Thus, to determine the effect each parameter has on the
output, the SNR is calculated by the follow formula:

SNi

i

i

y

s
= 10

2

2
log

(15.1)

where

y

N
yi

i
i u

u

Ni

=
=
∑1

1
,

s

N
y yi

i
i u i

u

Ni
2

1

1

1
=

−
−()

=
∑ ,

i = experiment number
u = trial number
N

i
 = number of trials for experiment i

Table 15.2 Taguchi’s
orthogonal array L4

No. of experiments (L) P1 P2 P3

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

15 A Methodology for Identifying the Relationships Between Performance Factors…

348

To minimize the performance characteristic (objective function), the following
definition of the SNR should be calculated:

SNi
u

iu

Ni y

N
= −

=
∑10

2

1

log

(15.2)

To maximize the performance characteristic (objective function), the following
definition of the SNR should be calculated:

SNi
i uu

N

N y

i

= −

=
∑10

1 1
2

1

log

(15.3)

Once the SNR values have been calculated for each factor and level, they are
tabulated as shown in Table 3, and then the range R (R = high SN–low SN) of the
SNR for each parameter is calculated and entered on Table 15.3.

According to Taguchi’s method, the larger the R value for a parameter, the greater
its effect on the process.

15.4 Experiment

15.4.1 Experimental Setup

All the experiments were conducted on a DELL Studio Workstation XPS 9100 with
Intel Core i7 12-core X980 processor at 3.3 GHz, 24-GB DDR3 RAM, Seagate
1.5 TB 7200 RPM SATA 3 GB/s disk, and 1-Gbps network connection. We used a
Linux CentOS 5.8 64-bit distribution and Xen 3.3 as the hypervisor. This physical
machine hosts five virtual machines (VM), each with a dual-core Intel i7 configura-
tion, 4-GB RAM, 10-GB virtual storage, and a virtual network interface type. In
addition, each VM executes the Apache Hadoop distribution version 0.22.0, which
includes the Hadoop Distributed File System (HDFS) and MapReduce framework
libraries. One of these VM is the master node, which executes NameNode (HDFS)
and JobTracker (MapReduce), and the rest of the VM are slave nodes running
DataNodes (HDFS) and JobTrackers (MapReduce). Figure 15.9 presents the cluster
configuration for the set of experiments.

Table 15.3 Rank for SNR values Level P1 P2 P3

1 SN
1,1

SN
2,1

SN
3,1

2 SN
1,2

SN
2,2

SN
3,2

3 SN
1,3

SN
2,3

SN
3,3

Range R
P1

R
P2

R
P3

Rank – – –

L.E.B. Villalpando et al.

349

The Apache Hadoop distribution includes a set of applications for testing the
performance of a cluster. According to Hadoop [13], these applications can test
various cluster characteristics, such as network transfer, storage reliability, and
cluster availability. Four applications were selected to obtain performance measures
from the Hadoop cluster. For example, CPU utilization time is a measure that varies
according to values given to configuration parameters, such as the number of files to
process and the amount of information to process. The viewpoint taken for the
selection of the above applications is that it is possible to use the same types of
parameters to configure each cluster machine.

Below is a brief description of the applications used in the experiments:

 1. TestDFSIO. This is a MapReduce application that reads and writes the HDFS
test. It executes tasks to test the HDFS to discover performance bottlenecks in
the network; to test the hardware, the OS, and the Hadoop setup of the cluster
machines (particularly the NameNode and the DataNodes); and to determine
how fast the cluster is in terms of I/O.

 2. TeraSort. The goal of this application is to sort large amounts of data as fast as
possible. It is a benchmark application that combines HDFS testing as well as
testing the MapReduce layers of a Hadoop cluster.

 3. MapRed Reliability. This is a program that tests the reliability of the MapReduce
framework by injecting faults/failures into the Map and Reduce stages.

 4. MapRedTest. This application loops a small job a number of times. This puts the
focus on the MapReduce layer and its impact on the HDFS layer.

Map Reduce
application

VM2
HDFS

(DataNode)
MapReduce

(TaskTracker)

VM3
HDFS

(DataNode)
MapReduce

(TaskTracker)

VM4
HDFS

(DataNode)
MapReduce

(TaskTracker)

VM 1
HDFS

(NameNode)
Map Reduce
(JobTracker)

VM5
HDFS

(DataNode)
MapReduce

(TaskTracker)

Xen Hypervisor

Physical Host
(DELL Studio Workstation XPS 9100)

Fig. 15.9 Cluster configuration for the experiments

15 A Methodology for Identifying the Relationships Between Performance Factors…

350

To develop the set of experiments, three parameters were selected, which can be set
with different values for each type of application. These parameters are (1) number of
files to process, (2) total number of bytes to process, and (3) the number of tasks to
execute in the cluster. Also, a number of different MapReduce base measures were
selected as possible quality objectives (objective function). These base measures are
related to one or more of the performance terms identified in [6] and described below:

• Job duration (seconds): Total time for the job to be processed by the cluster, from
its submission until it ends.

• Job status: Final job status, which can take one of the two nominal values: (1) job
successfully processed or (2) job failed.

• Number of successful Map tasks: Number of Map tasks successfully processed.
• Number of failed Map tasks: Number of Map tasks that failed during

processing.
• Total number of Map tasks: Sum of successful and unsuccessful Map tasks

undertaken during the job processing.
• Numbers of successful Reduce tasks: Number of Reduce tasks that were success-

fully processed.
• Number of failed Reduce tasks: Number of Reduce tasks that failed during

processing.
• Total number of Reduce tasks: Sum of successful and unsuccessful Reduce tasks

undertaken during the job processing.
• Number of combined tasks: Tasks that run at times when a Map task is finished

and intermediate result values need to be ordered to be processed by Reduce
more efficiently. This is the total number of combined tasks when the Map tasks
have ended and Reduce tasks begin.

• Spilled records: Number of records spilled to disk in all Map and Reduce tasks
in the job.

• Number of bytes read by the job: Total number of bytes read by the Map and
Reduce stages during job processing.

• Number of bytes written by the job: Total number of bytes written by the Map
and Reduce stages during job processing.

• Amount of physical memory used by the job (in number of bytes): How much of
the Random Access Memory (RAM) is being used in the cluster by the submitted
job during its execution.

• Amount of virtual memory used by the job (in number of bytes): How much of
the virtual memory (space on disk storage) is being used in the cluster by the
submitted job during its execution.

• CPU time per execution (seconds). Time taken by the CPU (cluster) to process a
MapReduce job (application).

15.4.2 Definition of Factors and Quality Objective

In a virtualized Cloud environment, Cloud providers implement clustering by slicing
each physical machine into multiple virtual machines (VM) interconnected through

L.E.B. Villalpando et al.

351

virtual interfaces. Therefore, a virtual cluster with the features mentioned above was
established to obtain representative results.

Fifty experiments were performed to test the Hadoop virtual cluster, varying the
following parameters: number of files, bytes to process, and tasks to perform, which
are parameters that can be modified in each application.

In each experiment, four different applications were executed, and performance
results were recorded for their analysis. In this way, the set of experiments investi-
gates the effect of the following variables (or control factors, according to Taguchi’s
terminology) on the output dependent variable:

• Number of files to be processed by the cluster
• Total number of bytes to be processed by the cluster
• Number of tasks into which to divide the job application

According to Taguchi, quality is often referred to as conformance to the operating
specifications of a system. To him, the quality objective (or dependent variable)
determines the ideal function of the output that the system should show. In our
experiment, the observed dependent variable is the following:

• CPU processing time per execution (seconds)

15.4.3 Experiment Development

According to the Hadoop documentation [13], the number of files and the amount
of data to be processed by a Hadoop cluster will be determined by the number of
processors (cores) available and their storage capacity. Also, the number of tasks to
be processed by the cluster will be determined by the total number of processing
units (cores) in the cluster. Based on the above premises and the configuration of our
cluster, we have chosen two levels for each parameter in the experiment. We deter-
mine the different levels of each factor in the following way:

• Number of files to process:

 – Small set of files: Fewer than 10,000 files for level 1
 – Large set of files: 10,000 files or more for level 2

• Number of bytes to process: Determined by the storage capacity of the cluster:

 – Fewer than 10,000 MB to process for level 1 (a small amount of data to
process)

 – 10,000 or more MB to process for level 2 (large amount of data to process)

• Number of tasks to create: According to the MapReduce framework [13], the
number of tasks to be created to process a job will be determined by the number
of processing units (cores) in the cluster and by the number of input files to pro-
cess. Since our cluster has a total of ten cores, we decided to perform tests with:

 – Fewer than ten tasks for level 1
 – Ten or more tasks for level 2

15 A Methodology for Identifying the Relationships Between Performance Factors…

352

Table 15.4 presents a summary of the factors, levels, and values for this
experiment.

Using Taguchi’s experimental design method, selection of the appropriate OA is
determined by the number of factors and levels to be examined. The resulting OA
for this case study is L4 (presented in Table 15.2). The assignment of the various
factors and values of this OA is shown in Table 15.5.

Table 15.5 shows the set of experiments to be carried out with different values for
each parameter selected. For example, experiment no. 2 involves fewer than 10,000
files, the number of bytes to be processed is greater than or equal to 10,000 MB, and
the number of tasks is greater than or equal to 10.

A total of 50 experiments were carried out by varying the parameter values.
However, only 12 experiments met the requirements presented in Table 15.5. This
set of 12 experiments was divided into three groups of four experiments each (called
trials). The values and results of each experiment are presented in Table 15.6.

Taguchi’s method defined the SNR used to measure robustness, which is the
transformed form of the performance quality characteristic (output value) used to
analyze the results. Since the objective of this experiment is to minimize the quality

Table 15.5 Matrix of experiments

No. of experiments (L) Number of files Number of bytes (MB) Number of tasks

1 <10,000 <10,000 <10
2 <10,000 ≥10,000 ≥10
3 ≥10,000 <10,000 ≥10
4 ≥10,000 ≥10,000 <10

Table 15.6 Trials, experiments, and resulting values

Trial Experiment Number of files MB to process Number of tasks CPU time (s)

1 1 10 3 1 0.39
1 2 10 10,000 10 406.09
1 3 10,000 450 10 3.50
1 4 10,000 10,000 2 0.82
2 1 100 33 2 6.29
2 2 100 1,000 100 442.73
2 3 96,000 29 42 283.35
2 4 10,000,000 10,000,000 4 292.16
3 1 100 300 1 3.79
3 2 1,000 10,000 1,000 615.76
3 3 1,000,000 3,300 10 141.60
3 4 10,000,000 50,000 2 78.73

Table 15.4 Factors and levels

Factor number Factor name Level 1 Level 2

1 Number of files to process <10,000 ≥10,000
2 Number of MB to process <10,000 ≥10,000
3 Number of tasks to create <10 ≥10

L.E.B. Villalpando et al.

353

characteristic of the output (CPU time used per job execution), the SNR for the “the
smaller the better” quality characteristic is given by formula 2, that is, (15.2)

The SNR result for each experiment is shown in Table 15.7.
According to Taguchi’s method, the factor effect is equal to the difference

between the highest average SNR and the lowest average SNR for each factor. This
means that the larger the factor effect for a parameter, the larger the effect the variable
has on the process or, in other words, the more significant the effect of the factor.
Table 15.8 shows the factor effect for each variable studied in the experiment.

15.4.4 Analysis and Interpretation of Results

Based on the results in Table 15.8, we can observe the following:

• Number of files is the factor that has the most influence on the quality objective
(CPU time) of the output observed, at 0.9555.

• Number of tasks is the second most influential factor, at 0.7823.
• Number of MB to process is the least influential factor in this case study, at

0.4654.

Figure 15.10 presents a graphical representation of the factor results and their
levels.

To represent the optimal condition of the levels, also called the optimal solution
of the levels, an analysis of SNR values is necessary in this experiment. Whether the
aim is to minimize or maximize the quality characteristic (CPU time), it is always
necessary to maximize the SNR parameter values. Consequently, the optimum level
of a specific factor will be the highest value of its SNR. It can be seen that the
optimum level for each factor is represented by the highest point in the graph
(as presented in Fig. 15.10), that is, L1, L2, and L2, respectively.

Table 15.7 SNR results

Experiment
Number
of files

MB to
process

Number
of tasks

CPU time
trial 1

CPU time
trial 2

CPU time
trial 3 SNR

1 <10,000 <10,000 <10 0.39 6.29 3.79 0.0235
2 <10,000 ≥10,000 ≥10 406.09 442.73 615.76 1.2712
3 ≥10,000 <10,000 ≥10 3.50 283.35 141.60 −0.1497
4 ≥10,000 ≥10,000 <10 0.82 292.16 78.73 −0.4666

Table 15.8 Factor effect on the output objective

Number of files MB to process Number of tasks

Average SNR at level 1 0.6473 −0.0631 −0.2216
Average SNR at level 2 −0.3082 0.4023 0.5607
Factor effect (difference) 0.9555 0.4654 0.7823
Rank 1 3 2

15 A Methodology for Identifying the Relationships Between Performance Factors…

354

Using findings presented in Tables 15.5 and 15.8 and in Fig. 15.10, we can
conclude that the optimum levels for the factors in this experiment based on our
experimental configuration cluster are as follows:

• Number of files to process: The optimum level is fewer than 10,000 files (level 1).
• Total number of bytes to process: The optimum level is equal to 10,000 MB or

more (level 2).
• Number of tasks to be created to divide the job: The optimum level is greater

than or equal to 10 tasks or more per job (level 2).

15.5 Statistical Data Analysis

The analysis of variance (ANOVA) is a statistical technique usually used in the
design and analysis of experiments. According to Trivedi [24], the purpose of
applying the ANOVA technique to an experimental situation is to compare the effect
of several factors applied simultaneously to the response variable (quality characte-
ristic). It allows the effects of the controllable factors to be separated from those of
uncontrolled variations. Table 15.9 presents the results of this analysis of the experi-
mental factors.

As can be seen in the contribution column of Table 15.9, these results can be
interpreted as follows (represented graphically in Fig. 15.11):

• Number of files is the factor that has the most influence (52 % of the contribution)
on the processing time in this case study.

• Number of tasks is the factor that has the second greatest influence (35 % of the
contribution) on the processing time.

• Total number of bytes to process is the factor with the least influence (12 % of the
contribution) on the processing time in the cluster.

L1

L2
L1

L2

L1

L2

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Number of Files

Number of tasks

MB to process

Fig. 15.10 Graphical representation of factors and their SNR levels

L.E.B. Villalpando et al.

355

In addition, based on the column related to the variance ratio F shown in
Table 15.9, we can conclude that:

• The factors number of files and number of tasks have the most dominant effect on
the output variable, respectively.

• According to Taguchi’s method, the minor factor contribution is taken as the
error estimate. So, the total number of bytes to process factor is taken as the error
estimate, since it corresponds to the smallest sum of squares.

The results of this case study show, based on both the graphical and statistical
data analyses of the SNR, that the number of files to process by a MapReduce appli-
cation in our cluster has the most influence, followed by the number of tasks into
which to divide the job, and, finally, the number of bytes to process.

To summarize, when an application is developed in the MapReduce framework
to be executed in this cluster, the factors mentioned above must be taken into account
in order to improve the performance of the application and, more specifically, the
output variable, which is CPU processing time.

Table 15.9 Analysis of variance (ANOVA)

Factors
Degrees of
freedom

Sum of
squares (SS)

Variance
(MS) Contribution (%)

Variance
ration (F)

No. of files 1 0.9130 0.9130 52 4
Total no. of bytes

to process
1 0.2166 0.2166 12

No. of tasks 1 0.6120 0.6120 35 3
Error 0 0.0000 0.0000
Total 3 1.7416
Error estimate 1 0.2166

0 10 20 30 40 50 60

Number of
files

Number of
tasks

MB to
process

Factor Contribution

Fig. 15.11 Percentage contribution of factors

15 A Methodology for Identifying the Relationships Between Performance Factors…

356

15.6 Summary

Cloud Computing is an emerging technology designed to process very large amounts
of data in a more efficient way, and one of its most important challenges is to deliver
good performance to its end users. In this chapter, a methodology is proposed for
determining the relationships among the CCA performance parameters. This metho-
dology is based on the performance measurement framework for Cloud Computing
systems [6], which defines a number of terms which are necessary to measure the
performance of CCS using software quality concepts. The terminology and vocabu-
lary associated with the proposed performance framework are aligned with many
different international standards, such as ISO 25010, 9126, 19759, and 25030. In
addition, the PMFCC defines several collection functions which are required to
obtain derived measures and enable analysis of the performance of CCA. One of the
challenges we faced in designing these functions was to decide how to determine
the extent to which the base measures are related and to their influence in the analysis
of CCA performance. This means the key design problem is to establish which base
measures are interrelated and how much they contribute to each of the collection
functions. To address this challenge, we proposed the use of a methodology based
on Taguchi’s method of experimental design. In traditional statistical methods, a
large number of observations (or data points) are typically needed for each variable,
in order to gain meaningful insight and analyze the results. However, this approach
is not appropriate for our research because of the large number of variables involved
and the time and effort required for the experiments.

Using the proposed methodology in this chapter, we carried out experiments to
analyze the relationship between the configuration parameters of several Hadoop
applications and their performance quality measures based on CPU processing
time. We found that when an application is developed in the MapReduce program-
ming model to be executed in our cluster, the number of files to process has the most
influence, followed by the number of tasks into which to divide the job and, finally,
the number of bytes to process. Thus, the factors mentioned above must be taken
into account in order to improve the performance of the application and, more
specifically, the performance of the output variable, which is CPU processing time.
In conclusion, we found that there is a strong relationship between the number of
files to be processed by a MapReduce application and the time required by the CPU
to process a job.

Our next research activity will be to reproduce this experiment in a production
environment, in order to verify these “trial group” results with greater validity. In
addition, this early research work will serve as a basis for determining the most
important relationships between the performance concepts defined in [6] and enable
us to propose a robust model for CCA performance analysis.

Further research is needed on the design of measurement models and mecha-
nisms to analyze the performance of a real Cloud Computing application, which
could contribute to validating our proposed methodology. Such evaluation work
will include performance concepts related to software, hardware, and networking.

L.E.B. Villalpando et al.

357

These concepts will be mapped to the collection functions identified in the PMF
previously developed to improve it. Therefore, we expect that it will be possible to
propose a robust model in future research to analyze Hadoop cluster behavior in a
real Cloud Computing environment, in order to enable the detection of possible
anomalies that affect CCS and CCA performance.

References

 1. Jin, H., Ibrahim, S., Bell, T., Qi, L., Cao, H., Wu, S., Shi, X.: Tools and technologies for build-
ing clouds. In: Antonopoulos, N., Gillam, L. (eds.) Cloud Computing: Principles, Systems and
Applications. Computer Communications and Networks, pp. 3–20. Springer, London (2010)

 2. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems Concepts and Design, 4th edn.
Addison-Wesley/Pearson Education, Edinburgh (2005). ISBN 0-321-26354-5

 3. ISO/IEC JTC 1 SC38: Study Group Report on Cloud Computing. International Organization
for Standardization, Geneva (2011)

 4. ISO/IEC Guide 99–12: International Vocabulary of Metrology – Basic and General Concepts
and Associated Terms, VIM. International Organization for Standardization, Geneva (2007)

 5. ISO/IEC 15939: Systems and Software Engineering – Measurement Process. International
Organization for Standardization, Geneva (2007)

 6. Bautista, L., Abran, A., April, A.: Design of a performance measurement framework for Cloud
Computing. J. Softw. Eng. Appl. 5(2), 69–75 (2012)

 7. Burgess, M., Haugerud, H., Straumsnes, S.: Measuring system normality. ACM Trans.
Comput. Syst. 20(2), 125–160 (May 2002)

 8. Rao, A., Upadhyay, R., Shah, N., Arlekar, S., Ragho-thamma, J., Rao, S.: Cluster performance
forecasting using predictive modeling for virtual Beowulf clusters. In: Garg, V., Wattenhofer,
R., Kothapalli, K. (eds.) ICDCN 2009. LNCS 5408, pp. 456–461. Springer, Berlin/Heidelberg
(2009)

 9. Smith, D., Guan, Q., Fu, S.: An anomaly detection framework for autonomic management of
compute cloud systems. In: 2010 I.E. 34th Annual IEEE Computer Software and Applications
Conference Workshops (COMPSACW), pp. 376–381. Seoul, South Korea (2010)

 10. Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman, H.J.,
Wright, N.J.: Performance analysis of high performance computing applications on the
Amazon Web Services Cloud. In: 2010 I.E. Second International Conference on Proceeding of
Cloud Computing Technology and Science (CloudCom), Indianapolis, Indiana, USA,
November 2010, pp. 159–168. doi:10.1109/CloudCom.2010.69

 11. Kramer, W., Shalf, J., Strohmaier, E.: The NERSC Sustained System Performance (SSP)
Metric. Technical report. Lawrence Berkeley National Laboratory, Berkeley. Technical
Information Center Oak Ridge Tennessee, Corporate Author: Lawrence Berkeley National
Lab, Berkeley, CA. http://www.ntis.gov/search/product.aspx?ABBR=DE2006861982 (2005)

 12. Mei, Y., Liu, L., Pu, X., Sivathanu, S.: Performance measurements and analysis of network I/O
applications in Virtualized Cloud. In: Proceedings of the 2010 I.E. 3rd International Conference
on Cloud Computing (CLOUD ‘10), Washington, DC. pp. 59–66 (2010). doi:10.1109/
CLOUD.2010.74

 13. Hadoop Apache Foundation: http://hadoop.apache.org/ (2010)
 14. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.

ACM 51(1), 107–113 (2004)
 15. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Manuscript of a book in the

Morgan & Claypool Synthesis Lectures on Human Language Technologies, University of
Maryland, College Park (2010)

 16. Yahoo! Inc.: Managing a Hadoop Cluster. http://developer.yahoo.com/hadoop/tutorial/
module7.html#configs (2010)

15 A Methodology for Identifying the Relationships Between Performance Factors…

http://dx.doi.org/10.1109/CloudCom.2010.69
http://www.ntis.gov/search/product.aspx?ABBR=DE2006861982%20(2005)
http://dx.doi.org/10.1109/CLOUD.2010.74
http://dx.doi.org/10.1109/CLOUD.2010.74
http://hadoop.apache.org/
http://developer.yahoo.com/hadoop/tutorial/module7.html#configs
http://developer.yahoo.com/hadoop/tutorial/module7.html#configs

358

 17. ISO/IEC 25030:2006(E): Software Engineering – Software Product Quality Requirements and
Evaluation (SQuaRE) – Quality Requirements. International Organization for Standardization,
Geneva (2006)

 18. ISO/IEC 19759: Software Engineering – Guide to the Software Engineering Body of
Knowledge (SWEBOK). International Organization for Standardization, Geneva (2005)

 19. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley-Interscience, New York (1991).
ISBN 0471503361

 20. ISO/IEC 25010:2010(E): Systems and Software Engineering – Systems and Software Product
Quality Requirements and Evaluation (SQuaRE) – System and Software Quality Models.
International Organization for Standardization, Geneva (2010)

 21. ISO/IEC 9126–1:2001(E): Software Engineering – Product Quality – Part 1: Quality Model.
International Organization for Standardization, Geneva (2001)

 22. Taguchi, G., Chowdhury, S., Wu, Y.: Taguchi’s Quality Engineering Handbook. Wiley,
Hoboken (2005)

 23. Cheikhi, L., Abran, A.: Investigation of the relationships between the software quality models
of ISO 9126 Standard: An empirical study using the Taguchi method. Softw. Qual. Prof. 14(2),
22–34 (2012)

 24. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer Science
Applications, 2nd edn. Wiley, New York, (2002). ISBN 0471333417

L.E.B. Villalpando et al.

359Z. Mahmood and S. Saeed (eds.), Software Engineering Frameworks for the Cloud
Computing Paradigm, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5031-2, © Springer-Verlag London 2013

 A
 Accidental complexity , 262
 ADL. See Architecture description

language (ADL)
 Agile development , 179, 181
 Agile manifesto , 217
 Agile process model , 3–23
 Agile service network (ASN) , 39
 Agile software development , 214
 Agility , 179–182
 AJAX. See Asynchronous Java Script

and XML (AJAX)
 Amazon , 124, 125, 138–141, 335
 Amazon dynamoDB , 321
 Amazon elastic block store , 320
 Amazon elastic compute cloud , 320
 Amazon relational database service (RDS) , 321
 Amazon simple storage service , 321
 Analysis , 332–335, 340, 341, 345, 347, 351,

353, 354, 356
 Analysis of variance (ANOVA) , 354
 Analysis model , 333
 Anomalies , 331, 332, 334, 356
 ANOVA. See Analysis of variance (ANOVA)
 Apex , 168, 179
 Apex Code , 168
 Application design alternatives , 190
 Application Programming Interfaces (APIs) ,

284, 285, 294, 295, 298, 299
 Application re-engineering

 refactored , 241
 stateless by design , 241

 Applications , 331–357
 Architecture

 controller , 246–247
 service modelling workbench , 244–245

 task , 245
 task manager , 246
 tracking service , 247–248

 Architecture description language (ADL) , 207
 Architecture generator , 207
 Asynchronous , 252
 Asynchronous Java Script and XML

(AJAX) , 7
 Audit trail , 70
 Authentication , 60, 84, 86
 Authorization , 85, 86
 Automate , 224
 Automated testing , 180–181
 Availability , 332, 340–343, 345, 349
 Availability of resources , 311
 Azure , 47, 48

 B
 Base measures , 331–333, 342, 345, 350, 356
 Batch processing , 151
 Berners-Lee, T. , 4, 6
 Best practices , 251
 Big table , 313
 Billing model , 66
 BPaaS. See Business process as a service

(BPaaS)
 Broad network access , 56
 Brooks, F. , 262, 272
 Bug Reproduction , 181
 Burgess, M. , 334
 Burndown , 219
 Business analysis , 135
 Business process , 130–135
 Business process as a service (BPaaS) ,

125, 129–131, 141

 Index

360

 C
 Capability maturity model , 12
 Capability maturity model integration

(CMMI) , 12
 Capital expenditure , 166, 184
 CASE 2.0 , 255
 Cause, G. , 132
 CBS. See Computer-based systems (CBS)
 CBSE. See Component based software

engineering (CBSE)
 CDNs. See Content delivery network (CDNs)
 Champy, J. , 275
 Chatty communication , 252
 CIFS. See Common internet fi le system (CIFS)
 Class, responsibility, collaboration (CRC) , 14
 Clinton, H. , 151
 Cloud , 283–284, 292, 293, 300, 331–333, 335,

341, 343, 344, 350, 356, 357
 application

 architecture , 109–111, 113–115, 118, 120
 computing

 characteristics , 102, 105
 Institute of Standards and Technology

(NIST) , 102–104, 116
 deployment types

 community , 103, 116
 hybrid , 103, 116, 118
 private , 103, 116
 public , 101, 103, 108, 116, 117

 model
 classic life cycle , 101, 106–109,

115, 116
 wrapper , 101, 107, 108, 114, 121

 risk , 101, 105, 106, 115, 118
 security , 105, 106, 117, 118
 services

 infrastructure as a service (IaaS) ,
104–106, 108, 109, 113, 114,
120, 121

 platform as a service (PaaS) , 104, 108,
109, 113, 114, 120, 121

 software as a service (SaaS) , 103, 104,
106, 108, 109, 113, 114, 120, 121

 stakeholders , 105, 108
 Cloud aided software engineering , 255
 Cloud architecture , 190
 Cloud assessment , 80, 81
 Cloud-based applications , 307
 Cloud-based testing , 147
 Cloud broker , 172
 Cloud brokerage , 176, 178
 Cloud computing , 25, 26, 39, 43, 56, 145,

148, 189, 306
 Cloud computing architecture , 190

 Cloud computing platform , 3–23
 Cloud costing , 90, 91
 Cloud front , 321
 Cloud hosted applications , 149
 Cloud kick , 70
 Cloud optimized application , 150
 Cloud orchestration , 153
 Cloud security alliance (CSA) , 63
 Cloud service broker (CSB) , 70
 Cloud service providers (CSPs) , 42, 50
 Cloud services , 26, 46, 123, 127, 128–133,

141, 332
 Cloud switch , 70
 Cloud testing , 150, 165–167, 169–172,

178–181, 184
 Cloud testing infrastructure-as-a-service

(CTIaaS) , 167
 Cloud testing model , 182–184
 Cloud testing platform-as-a-service (CTPaaS) ,

167, 168, 179
 Cloud testing software-as-a-service (CTSaaS) ,

167–169
 Cloud test vendor , 174
 Cluster , 334, 336, 337, 348–351, 354–356
 CMMI. See Capability maturity model

integration (CMMI)
 COCOMO. See Constructive cost estimation

model (COCOMO)
 Collaboration , 215
 Commodity , 336, 337
 Common gateway interface , 6
 Common internet fi le system (CIFS) , 314
 Compliance , 227
 Component based software engineering

(CBSE) , 124
 Computer-based systems (CBS) , 334
 Compression , 317
 Computing , 331–335, 341, 343, 344,

356, 357
 Confi dential , 85, 86
 Constructive cost estimation model

(COCOMO) , 3–23
 Consumer , 86, 87
 Content delivery network (CDNs) , 65
 Continuous integration , 220
 Control parallelism , 92
 Copyright infringements , 260
 Cost-benefi t analysis , 172–173, 178
 Costing , 89, 90, 97
 CPU , 331, 333–335, 349–353, 355, 356
 CRC. See Class, responsibility, collaboration

(CRC)
 CSB. See Cloud service broker (CSB)
 Cycle , 5

Index

361

 D
 Data , 331–334, 336–338, 342, 345–347, 349,

351, 355, 356
 Data-as-a-service (DaaS) , 57
 Data parallelism , 93
 Data usage , 66
 Dean, J. , 336
 De-duplication , 317
 Deep standardization , 269
 DeMarco, T. , 20
 Denial-of-service , 59
 Deployment , 227
 Deployment diagram editor , 209
 Derived measure , 345
 Design decisions , 206
 Design for failure , 94, 95, 252
 Design pattern(s) , 91, 243

 data transfer object (dto) pattern , 242
 parallel-processing , 243

 Design rule editor , 205
 Design rule modelling , 205–206
 Design space , 190
 DevOps , 225, 226
 Distributed environment , 83, 84, 88, 89, 92, 96
 Distributed software development , 219
 Domain , 191
 Domain analysis , 190, 191
 Domain model , 192
 Domain name service , 6
 Domain scoping , 192
 Domain specifi c language (DSL) , 168, 178,

179, 182, 183

 E
 Eclipse , 208
 Effi ciency , 341, 342
 Elasticity , 56, 125, 135, 138, 150, 310–311
 Elastic queue , 311
 Essential complexity , 262
 Eucalyptus , 70
 Experiment , 334, 346, 347, 351–354, 356
 eXtensible Markup Language (XML) , 3–23
 External load , 82, 91
 Extreme cloud programming , 19, 20
 Extreme programming , 13

 F
 Failure , 332, 334
 Failure analysis , 94
 Fast and secure protocol , 315
 Fault , 332, 341
 Fault domains , 325

 Fault tolerance , 341
 Feature , 192
 Feature analyzer tool , 207
 Feature diagram , 192, 195
 Feature-driven design , 190
 Feature model , 190, 194–202
 Feature modeling , 190–192
 Feature-Oriented Domain Analysis

(FODA) , 192
 Federal risk and authorization management

program (FedRAMP) , 68
 File , 337, 338
 Field-Programmable Gate Array (FPGA) , 286
 FLOSS. See Free/Libre/Open Source Software

(FLOSS)
 Flowcharts, extract methods , 242
 FODA. See Feature-Oriented Domain

Analysis (FODA)
 FPGA. See Field-Programmable Gate Array

(FPGA)
 Framework , 331, 334, 336, 344, 345, 348,

349, 351, 355, 356
 Free/Libre/Open Source Software (FLOSS) , 5

 G
 Generation of architecture , 206–208
 Godse, M. , 210
 Google , 336
 Google app engine , 319
 Graphics Processing Units (GPUs) , 286
 Green testing , 172
 Grid computing , 102
 Group dynamics , 264
 Guha, R. , 30, 51

 H
 Hadoop , 4, 10, 313, 332, 336–337, 339, 345,

349, 351, 356
 Hadoop mapreduce , 336–337, 339, 345
 Hadoop File System (HDFS) , 73, 337, 348, 349
 Hammer, M. , 275
 Handling failure , 313–314
 Hardware , 340–342, 349, 356
 Hardware security module , 72
 Harkins, P. , 151
 HDFS. See Hadoop File System (HDFS)
 HTTP. See Hypertext transport protocol

(HTTP)
 HTTPS , 297
 Hybrid infrastructure , 66
 Hypertext transport protocol (HTTP) , 6–8, 17,

285–288, 291, 293, 296, 299

Index

362

 I
 IaaS. See Infrastructure as a service (IaaS)
 IDA. See Information dispersal algorithm (IDA)
 IDEs. See Integrated development

environments (IDEs)
 Idempotency , 251
 Image , 219
 Industrial espionage , 176, 177
 Information dispersal algorithm (IDA) , 315
 Information security , 84–87
 Infrastructure , 213, 214, 218–220, 226–229
 Infrastructure as a service (IaaS) , 9, 57, 130,

134, 135, 167, 190, 305, 332
 Instrument , 253
 Integrated development environments

(IDEs) , 32
 Internal load , 91
 Internet , 25
 Interoperability , 67, 218
 IP , 284, 288, 298
 ISO 9126–1 , 341
 ISO 15939 , 333
 ISO 19759 , 339
 ISO 25010 , 331, 333, 336, 341–343, 356
 ISO 25030 , 339–340
 ISO SC38 , 332
 Iteration , 214
 IT service management , 277

 J
 Jackson, K.R. , 335
 Jain, R. , 340
 Job , 345, 349

 K
 Kilo lines of code (KLOC) , 18, 21
 Kim, S.D. , 209
 KLOC. See Kilo lines of code (KLOC)
 KobrA , 266
 KVM , 299

 L
 La, H.J. , 209
 Laszewski, V.G. , 124
 Latency , 64–65
 Lin, J. , 336
 Load balancers , 197
 Load balancing , 229
 Load sharing , 308
 Load testing , 155, 165, 166, 174, 184
 Local compute storage facility , 253
 Loose coupling , 251

 M
 MaaS. See Modeling as a service (MaaS)
 Management-by-magazine , 173
 Map reduce , 313
 Mapreduce , 334, 336–338, 348–351,

355, 356
 Mashup , 4, 10
 Maturity , 341
 MDA. See Model driven architecture (MDA)
 MDSE. See Model-driven software

engineering (MDSE)
 Measurement , 331–335, 340, 342, 344,

347, 356
 Measurement framework , 333
 Mei, Y. , 335
 Memchache , 320
 Method , 332, 333, 345–348, 352, 353, 356
 Microsoft , 124, 133
 Mintzberg, H. , 260
 Model(s) , 331–334, 336, 341, 342, 347, 356
 Model driven architecture (MDA) , 208
 Model-driven software engineering

(MDSE) , 41, 42
 Modeling as a service (MaaS) , 42
 Models at run-time , 267–268
 Monolithic , 237
 Mulik, S. , 210
 Multiple instance component , 312
 Multi tenancy , 149, 229
 Multi tenant , 63

 N
 Nagios Remote Plugin Executor (NRPE) , 299
 National Energy Research Scientifi c

Computing Center (NERSC) , 335
 Natis, Y. , 104
 NERSC. See National Energy Research

Scientifi c Computing Center
(NERSC)

 Network File System (NFS) , 296
 Network latency , 94, 96
 NFS. See Network File System (NFS)
 Node , 337, 348
 Normalizing SUM , 268–269
 NRPE. See Nagios Remote Plugin

Executor (NRPE)

 O
 OCCI. See Open Cloud Computing

Interface (OCCI)
 Off-shoring , 256
 OGF. See Open Grid Forum (OGF)
 On-demand , 56

Index

363

 On-demand cloud , 26
 On-demand scalability , 9, 10
 On demand services , 125
 Ontology , 3–23, 192
 OpenID , 283, 284, 293
 Open Cloud Computing Interface (OCCI) ,

284, 291
 Open Grid Forum (OGF) , 291
 Open source , 5, 283, 295
 Orthogonal arrays , 346
 Orthographic software modeling

(OSM) , 266

 P
 PaaS. See Platform as a service (PaaS)
 Parallel , 336
 Parallel and distributed system , 56
 Parallel batch processing , 151
 Parallelism , 82, 89, 91–94
 Parallelization , 310
 Parallel processing , 151
 Parallel programming , 92
 Parallel testing , 181–182
 Parameter , 341, 346–348, 351–353
 Pareto principle , 170
 Partitioning , 308
 Partitioning data , 88
 Pay-as-you-go , 66, 154, 167, 170, 171
 Performance , 332–335, 340–343, 345–352,

355, 356
 Performance Measurement Framework

for Cloud Computing (PMFCC) ,
333, 334, 342, 345, 356

 Performance test , 169
 Platform , 155
 Platform as a service (PaaS) , 47, 49, 57,

167, 190, 219, 283, 297, 299,
305, 332

 PMFCC. See Performance Measurement
Framework for Cloud Computing
(PMFCC)

 Poison messages , 252
 Pricing , 89
 Private , 85, 86
 Private cloud , 66
 Process , 3–23
 Processing time , 331, 333, 351,

354–356
 Product backlogs , 219
 Project management , 222
 Protection , 86
 Prototyping , 227
 Proximity deployments , 253
 Public , 85, 86

 Q
 QoS. See Quality of service (QoS)
 Quality , 331–334, 336, 339, 341, 342, 346,

347, 350–354, 356
 Quality management , 263
 Quality of service (QoS) , 124–126, 128, 129,

134, 138

 R
 Rackspace , 60
 Ramachandran, M. , 125, 135
 RBAC. See Role-based acces control (RBAC)
 RDF. See Resource Description Framework

(RDF)
 REALcloud , 285–287, 291–293
 Recoverability , 341
 Reduced redundancy storage (RRS) , 316
 Reference architecture , 190, 193–194
 Relationship , 331, 333, 342–345, 347, 356
 Reliability , 61–63, 334, 340–342, 349
 Requirement(s) , 80–83, 332, 339–342, 352
 Requirements engineering , 123–141
 Requirement volatility , 181
 Resource Description Framework (RDF) ,

7, 8, 15
 Resource pooling , 56
 Resources , 341
 Resources management , 126
 REST , 288
 Return on investment (ROI) , 128, 131, 132,

171–172
 Role-based acces control (RBAC) , 298
 RRS. See Reduced redundancy storage (RRS)

 S
 SaaS. See Software as a service (SaaS)
 SaaS application architecture , 194
 SaaS family feature model , 205
 SaaS feature model , 194

 application layer , 197–198, 206
 application Server , 198–199
 application service layer , 193
 business Layer , 206
 business rule engine , 199
 business service layer , 193
 communication , 201
 data access layer , 193, 201–202, 206
 data storage layer , 193, 202
 distribution layer , 193, 196–197
 ESB , 199
 identity management , 200–201
 integration , 200
 metadata management , 199

Index

364

 SaaS feature model (cont.)
 orchestration , 199
 presentation layer , 193, 197
 Storage Layer , 206
 supporting service layer , 193
 supporting services layer , 202
 user layer , 195–196

 SaaS reference architecture , 193, 195
 Safety and privacy , 3–23
 Salesforce.com , 17
 Scalability , 229, 308
 Scale , 237
 Schach, S. , 113
 SDLC. See Software development life cycle

(SDLC)
 Secret , 85, 86
 Security , 59, 126, 133, 134, 228
 Semantic web , 3–23
 Semantic web search engine (SWSE) , 8
 Service composition , 138
 Service level agreement (SLA) ,

67, 124, 284, 285
 Service level requirements , 134
 Service modelling workbench , 236

 process , 238, 240
 service engineering lifecycle , 237
 user interactions , 238

 Service oriented architecture (SOA) , 3–23,
124, 125, 127, 138, 140, 141, 236

 agility , 236
 data access layer , 245
 data access layer entity , 245
 data contract , 245
 service contract , 245
 service implementation , 245
 service re-usability , 236

 Service oriented computing (SoC) , 129, 141
 Short running transactions , 252
 Signal-to-noise ratio (SNR) , 347, 348, 352,

353, 355
 Simple Object Access Protocol (SOAP) ,

284, 288, 296, 299
 Single instance , 312
 Single-tenant , 63
 Single underlying model (SUM) , 265
 Six sigma , 171
 SLA. See Service level agreement (SLA)
 Smartphone , 40
 Smith, D. , 334
 SNR. See Signal-to-noise ratio (SNR)
 SOA. See Service oriented architecture (SOA)
 SOAP. See Simple Object Access Protocol

(SOAP)
 SoC. See Service oriented computing (SoC)

 Software , 331, 332, 336, 340–342, 356
 development phases

 communication , 107, 109, 114, 117,
118, 121

 construction , 107, 113, 115, 121
 deployment phase , 107, 113, 121
 modelling , 107, 110, 111, 114, 118, 121
 other process models , 107, 115
 planning , 107, 110, 114, 116, 121

 process model
 software system life cycle , 106

 Software as a service (SaaS) , 42, 46–48, 57,
123, 124, 130, 134, 135, 137, 167,
190, 193, 215, 306, 332

 Software development , 26, 28, 30–35, 37, 38,
40, 43, 45, 46, 50, 51

 Software development life cycle (SDLC) ,
3–23, 30

 Software engineering , 3–23, 25–52, 123, 126,
127, 130, 133

 Software piracy , 262
 Software testing , 146
 SQL azure , 318
 SSL , 284, 298, 300
 Standardization , 72
 Standards , 126
 Stateless , 310
 Storming , 274
 Streamlining SUM , 271
 SUM. See Single underlying model (SUM)
 Support Layer , 195
 SWSE. See Semantic web search engine

(SWSE)
 Synchronization , 66

 T
 Taguchi, G. , 331, 333, 334, 345–348,

351–353, 355, 356
 Taguchi method , 331, 333, 334, 346, 355
 Task , 334, 337, 338, 345, 350
 Technical adoption strategy , 241–249

 application re-engineering , 241
 breakout granular operations , 242
 co-ordinate interactions

asynchronously , 242
 defi ne input/output operation

parameters , 242
 draw fl owcharts , 241–242

 Template based code generation process , 237
 Testing , 220
 Tim berners lee , 3–23
 Time-to-market , 171, 180
 Tools , 228

Index

365

 Traditional applications , 307
 Transparency , 63–64
 TripWire , 63
 TrustCloud , 64

 U
 UDDI. See Universal Description, Discovery

and Integration (UDDI)
 UML. See Unifi ed modeling language (UML)
 Unfreezing , 274
 Unit testing , 155
 Unifi ed modeling language (UML) , 191
 Universal Description, Discovery and

Integration (UDDI) , 4
 Universal resource identifi er , 3–23
 Universal Resource Locator (URL) , 288, 291,

293, 299
 Usage patterns , 80, 81, 90, 94, 95, 98
 Use case , 242
 Use cloud resources cautiously , 252

 V
 Validation , 146
 Variability model , 192
 Variable , 345, 351, 354–356
 Velocity , 222
 Vendor , 86, 87
 Vendor Lock-in , 67, 168, 176, 179
 Verifi cation , 146
 Version control , 97
 Viable software , 257, 272–275
 Video conferencing , 218
 View-driven software engineering , 264–271
 Virtual , 219, 334, 335, 348, 350, 351
 Virtualization , 3–23, 102, 190
 Virtualization of a service , 317
 Virtual machines (VM)
 Vulnerabilities , 59

 W
 WAF. See Web application fi rewall (WAF)
 Wang, L. , 124
 Waterfall , 227
 WCF. See Windows communication

foundation (WCF)
 Web 2.0 , 4, 6, 9, 14, 17, 18
 Web 3.0 , 3, 4, 6, 7, 9, 14, 17, 22
 Web application fi rewall (WAF) , 69
 Web applications , 152
 Web Service Description Language (WSDL) ,

288, 299
 Web service(s) , 3–23, 125, 126, 129, 131,

139, 140
 Windows Azure , 244

 azure blob storage , 250
 azure drive , 250
 azure queue storage , 250
 azure table storage , 250
 azure web and worker roles , 250
 blob storage , 245
 consolidator , 248–249
 drive , 247
 net , 248
 queues , 246
 VMI , 247
 web role , 246
 worker role , 246

 Windows azure , 317
 Windows communication foundation

(WCF) , 246
 World wide web , 3–23
 WSDL. See Web Service Description

Language (WSDL)

 X
 XFeature , 203
 XML. See eXtensible Markup Language

(XML)

Index

	Editors
	Dr Zaigham Mahmood
	Dr Saqib Saeed

	Preface
	Overview
	Objectives
	Organisation
	Target Audience
	Suggested Uses

	Acknowledgements
	Contents
	Contributors
	Part I: Impact of Cloud Paradigm on Software Engineering
	Chapter 1: Impact of Semantic Web and Cloud Computing Platform on Software Engineering
	1.1 Introduction
	1.2 Literature Survey
	1.2.1 Transformation to Semantic Web
	1.2.2 Cloud Computing Platform
	1.2.2.1 Safety and Privacy Issues in Cloud Computing Platform

	1.2.3 Traditional Software Engineering Process

	1.3 Need for Modification of Software Engineering: Analysis
	1.3.1 Need for Semantic Web -Enabled Software Artifacts
	1.3.2 Creating a Web Service
	1.3.3 How SW Engineers Are Coping in Cloud Platform
	1.3.4 Impact of Cloud Computing on Software Engineering

	1.4 Proposed SW Process Model for Cloud Platform
	1.5 Conclusion
	References

	Chapter 2: Envisioning the Cloud-Induced Transformations in the Software Engineering Discipline
	2.1 Introduction
	2.2 Cloud-Sponsored Transformations for IT
	2.3 Leveraging Clouds for Global Software Development (GSD)
	2.4 A Reflection on Software Engineering
	2.5 Combination of Agility and Cloud Infrastructure for Next-Generation Software Engineering
	2.6 Convergence of Service and Cloud Paradigms
	2.7 Amalgamation of Model-Driven Architecture and the Cloud Paradigms
	2.8 Mechanisms for Assisting Cloud Software Development
	2.9 Cloud Platform Solutions for Software Engineering
	2.10 Software Engineering Challenges in Cloud Environments
	2.11 Conclusion
	References

	Chapter 3: Limitations and Challenges in Cloud-Based Applications Development
	3.1 Introduction
	3.1.1 Characteristics of Cloud Systems
	3.1.2 Cloud Service Models

	3.2 Challenges
	3.2.1 Security and Confidentiality
	3.2.1.1 Overcoming the Challenge

	3.2.2 Control
	3.2.2.1 Overcoming the Challenge

	3.2.3 Reliability
	3.2.3.1 Overcoming the Challenge

	3.2.4 Transparency
	3.2.4.1 Overcoming the Challenge

	3.2.5 Latency
	3.2.5.1 Overcoming the Challenge

	3.2.6 Costing Model
	3.2.6.1 Overcoming the Challenge

	3.2.7 Charging Model
	3.2.7.1 Overcoming the Challenge

	3.2.8 Service-Level Agreement (SLA)
	3.2.9 Vendor Lock-In
	3.2.9.1 Overcoming the Challenge

	3.3 Security Challenges in Cloud Application Development
	3.3.1 Challenges in Case of PaaS
	3.3.1.1 Privacy Control
	3.3.1.2 Traceability and Audit

	3.3.2 Challenges in Case of SaaS
	3.3.2.1 Governance: Applying Restrictions and Exit Strategy
	3.3.2.2 Data Encryption

	3.3.3 Challenges Relating to SaaS, PaaS, IaaS
	3.3.3.1 Using API Keys

	3.4 Challenges for Application Developers
	3.4.1 Lack of Standardisation
	3.4.2 Lack of Additional Programming Support
	3.4.3 Metrics and Best Practices

	3.5 Conclusion
	References

	Part II: Software Development Life Cycle for Cloud Platform
	Chapter 4: Impact of Cloud Services on Software Development Life Cycle
	4.1 Introduction
	4.2 Requirement Analysis
	4.3 Cloud Assessment
	4.4 Usage Patterns and Requirements Capture
	4.4.1 Constant Usage of Cloud Resources over Time
	4.4.2 Cyclic Internal Load
	4.4.3 Cyclic External Load
	4.4.4 Spiked Internal Load
	4.4.5 Spiked External Load
	4.4.6 Steady Growth over Time

	4.5 Architecture
	4.6 Information Architecture
	4.7 Information Security
	4.8 Non-functional Information Details
	4.8.1 Volume
	4.8.2 Variety
	4.8.3 Internal and External
	4.8.4 Ability to Query

	4.9 Partitioning Strategy
	4.10 Information Processing
	4.11 Information Backup Strategy
	4.12 Cost as Non-functional Requirement
	4.12.1 Weighted Cloud Costing
	4.12.2 Tiered Cloud Costing
	4.12.3 Costing That Differentiates Service and Infrastructure
	4.12.4 Consumption Cloud Costing

	4.13 Usage Patterns and Architecture
	4.13.1 Constant Usage of Cloud Resources over Time
	4.13.2 Cyclic Internal Load
	4.13.3 Cyclic External Load
	4.13.4 Spiked Internal Load
	4.13.5 Spiked External Load
	4.13.6 Steady Growth over Time

	4.14 Design
	4.15 Design for Parallelism [9]
	4.15.1 Data Parallelism
	4.15.2 Task Parallelism

	4.16 Design for Failure
	4.17 Build
	4.18 Testing
	4.18.1 Diversity of Deployment Environments
	4.18.2 Configuration and Network-Level Challenges
	4.18.3 Changes in Application Development Methodologies
	4.18.4 Application Limitations
	4.18.5 Data Synchronization
	4.18.6 Involved Extra Costing

	4.19 Impact on Version Control and Configuration Management
	4.20 Conclusion
	References

	Chapter 5: Cloud-Based Development Using Classic Life Cycle Model
	5.1 Introduction
	5.1.1 Cloud for Business

	5.2 Cloud-Based Development
	5.2.1 Risk-Based Approach for Feasibility Analysis
	5.2.2 Software System Life Cycle
	5.2.3 Classic Life Cycle Model
	5.2.4 Cloud Services Wrapper Model
	5.2.5 Variants of Classic Life Cycle Model
	5.2.6 Other Process Models

	5.3 Case Study
	5.3.1 Background Scenario
	5.3.2 Classic Life Cycle Model: Application

	5.4 Conclusion
	References

	Chapter 6: Business Requirements Engineering for Developing Cloud Computing Services
	6.1 Introduction
	 6.2 Design for Cloud Applications
	 6.3 Business-Oriented Cloud Service Development Process
	6.3.1 Business Process as a Service Paradigm

	6.4 Business Requirements Engineering Process and Framework
	 6.5 Design of Service Components
	 6.6 Case Study: Amazon EC2
	 6.7 Conclusion
	References

	Chapter 7: Testing Perspectives for Cloud-Based Applications
	7.1 Introduction
	7.1.1 Software Testing in the Cloud
	7.1.2 Benefits and Challenges of Cloud-Based Testing

	7.2 Cloud Applications Frameworks
	7.2.1 Traditional Applications vs. Cloud-Based Applications
	7.2.2 Traditional Software Testing vs. Cloud Testing
	7.2.3 Applications Suitable for Cloud
	7.2.4 Cloud Application Architecture and Process Models
	7.2.5 Cloud Application Development and Testing Platforms

	7.3 Cloud-Based Testing Models: State of the Art
	7.3.1 Limitations of the Existing Models

	7.4 Automatic Test Case Generation
	7.5 Future Research Directions
	References

	Chapter 8: Testing in the Cloud: Strategies, Risks and Benefits
	8.1 Introduction
	8.2 Cloud Testing
	8.2.1 Types of Cloud Testing
	8.2.1.1 Cloud Testing Infrastructure-as-a-Service (CTIaaS)
	8.2.1.2 Cloud Testing Platform-as-a-Service (CTPaaS)
	8.2.1.3 Cloud Testing Software-as-a-Service (CTSaaS)

	8.2.2 Economics of Cloud Testing
	8.2.3 Benefits of Cloud Testing
	8.2.3.1 Improved Quality
	8.2.3.2 Improved Accuracy
	8.2.3.3 Waste Reduction
	8.2.3.4 Improved Return-on-Investment (ROI)
	8.2.3.5 Green Testing
	8.2.3.6 Easy Barrier to Exit

	8.2.4 Best Practices for Migrating to Cloud Testing
	8.2.4.1 Cost-Benefit Analysis
	8.2.4.2 Training and Awareness
	8.2.4.3 Developing Cloud Testing Strategy
	8.2.4.4 Sourcing Cloud Testing Vendors
	8.2.4.5 Cloud Test Platform Testing
	8.2.4.6 Test Execution

	8.2.5 Risk Assessment in Cloud Testing
	8.2.5.1 Non-conformance to Organisational Policy, Strategy and Methodology
	8.2.5.2 Security
	8.2.5.3 Industrial Espionage
	8.2.5.4 Termination of Service Provision
	8.2.5.5 Inaccurate Cost-Benefit Analysis
	8.2.5.6 Biased Cloud Brokerage
	8.2.5.7 Abandoning Trusted Legacy Testing Resources
	8.2.5.8 Vendor Lock-In
	8.2.5.9 Cloud Vendor’s Server Breakdown
	8.2.5.10 Internet Connectivity

	8.3 Impact of Cloud Testing on Software Development Agility
	8.3.1 Reduced Time-to-Market (TTM)
	8.3.2 Support for Geographically Dispersed Teams
	8.3.3 Visibility and Accessibility
	8.3.4 Support for Automated Testing
	8.3.5 Requirement Volatility Support
	8.3.6 Bug Reproduction
	8.3.7 Support for Test-Driven Development
	8.3.8 Parallel Testing

	8.4 Cloud Testing Model
	8.4.1 Productivity
	8.4.2 Project Cost
	8.4.3 Software Quality

	8.5 Conclusion
	References

	Part III: Software Design Strategies for Cloud Adoption
	Chapter 9: Feature-Driven Design of SaaS Architectures
	9.1 Introduction
	9.2 Feature Modeling
	9.3 Reference Architecture for Cloud Computing
	9.4 Feature Model of SaaS
	9.4.1 Top-Level Feature Model
	9.4.1.1 User Layer
	9.4.1.2 Distribution Layer
	9.4.1.3 Presentation Layer
	9.4.1.4 Application Layer
	9.4.1.5 Application Server
	9.4.1.6 ESB
	9.4.1.7 Orchestration
	9.4.1.8 Metadata Management
	9.4.1.9 Business Rules Engine
	9.4.1.10 Integration
	9.4.1.11 Identity Management
	9.4.1.12 Communication
	9.4.1.13 Data Access Layer
	9.4.1.14 Data Storage Layer
	9.4.1.15 Supporting Services Layer

	9.5 Tool Support and Example
	9.5.1 Feature Modeling
	9.5.2 Design Rule Modeling
	9.5.3 Associating Design Decisions to Features
	9.5.4 Generation of the Application Architecture
	9.5.5 Generating Deployment Diagram for SaaS Architecture

	9.6 Related Works
	9.7 Conclusion
	References

	Chapter 10: Impact of Cloud Adoption on Agile Software Development
	10.1 Introduction
	10.2 Agile, Cloud and Collaboration
	10.3 Setting Up Infrastructure
	10.4 Distributed Development
	10.4.1 Setting Up Environments
	10.4.2 Continuous Integration
	10.4.3 Software Testing
	10.4.4 Project Management

	10.5 Deployment Considerations
	10.6 Cost and Time Implications of Agile in the Cloud
	10.6.1 The Case of Start-Ups and SMEs

	10.7 Challenges Using Cloud for Agile Software Development
	10.8 Case Study of an Agile Project That Adopted Cloud
	10.9 Tools for Agile Software Development in the Cloud
	10.10 Conclusion
	References

	Chapter 11: Technical Strategies and Architectural Patterns for Migrating Legacy Systems to the Cloud
	11.1 Introduction
	11.2 Background
	11.3 AS-IS Architecture
	11.3.1 Challenges

	11.4 Technical Adoption Strategy
	11.4.1 Application Re-engineering
	11.4.1.1 Draw Flowcharts
	11.4.1.2 Breakout Granular Operations
	11.4.1.3 Define Input/Output Operation Parameters
	11.4.1.4 Define and Coordinate Interactions Asynchronously

	11.4.2 Identification of Design Patterns
	11.4.3 Future-State Solution Architecture
	11.4.3.1 Service Modelling Workbench
	11.4.3.2 Task
	11.4.3.3 Task Manager
	11.4.3.4 Controller
	11.4.3.5 Tracking Service
	11.4.3.6 Consolidator

	11.5 Windows Azure Cloud Components to Implement the Proposed Architecture
	11.6 Benefits Realised
	11.7 Best Practices
	11.8 Summary
	References

	Chapter 12: Cloud-Aided Software Engineering: Evolving Viable Software Systems Through a Web of Views
	12.1 Introduction
	12.2 Challenges in Today’s Software Engineering Projects
	12.2.1 Complexity in Today’s Software Engineering Projects
	12.2.2 Past and Future Economics of the Software Industry
	12.2.3 Cloud as an Aid Against Copyright Infringement

	12.3 Accidental Complexity in SE Tools and Environments
	12.4 View-Driven Software Engineering
	12.4.1 Models at Run-Time
	12.4.2 On the Realization of the SUM
	12.4.2.1 The Normalizing SUM
	12.4.2.2 Deep Standardization
	12.4.2.3 Orientation Toward Abstract Syntax
	12.4.2.4 The Streamlining SUM

	12.5 Life Cycle and Stakeholder Awareness
	12.5.1 The Viable Software Engineering Life Cycle
	12.5.2 Viable Software Life Cycle Instruments
	12.5.3 Viable Software Products

	12.6 Conclusion
	References

	Chapter 13: Development of Cloud Applications in Hybrid Clouds with Support for Multi-scheduling
	13.1 Introduction
	13.2 Framework for Distributed Cloud Applications
	13.3 Developing Distributed Applications in the Framework
	13.4 Overview of Cloud Distributed Environments
	13.4.1 Service Provider
	13.4.2 Security
	13.4.3 Service Consumer
	13.4.4 Management
	13.4.5 Service Developer

	13.5 Final Considerations
	References

	Part IV: Performance of Cloud Based Software Applications
	Chapter 14: Efficient Practices and Frameworks for Cloud-�Based Application Development
	14.1 Introduction
	14.2 Design Patterns for Key Issues of Cloud Application Development
	14.2.1 Scalability
	14.2.1.1 Load Sharing
	14.2.1.2 Partitioning
	14.2.1.3 Vertical Partitioning
	14.2.1.4 Horizontal Partitioning
	14.2.1.5 Relaxing Data Constraints
	14.2.1.6 Parallelization
	14.2.1.7 Going Stateless

	14.2.2 Elasticity
	14.2.3 Availability
	14.2.4 Multi-tenancy
	14.2.5 High Performance
	14.2.6 Handling Failure

	14.3 Analysis of Storage as a New Form of Service
	14.3.1 Access
	14.3.2 Performance
	14.3.3 Availability
	14.3.4 Control
	14.3.5 Efficiency

	14.4 Frameworks
	14.4.1 Windows Azure
	14.4.1.1 Salient Features of Azure

	14.4.2 Google App Engine
	14.4.2.1 Salient Features of App Engine

	14.4.3 Amazon Web Services (AWS)
	14.4.3.1 Salient Features of AWS

	14.5 Comparison of AWS and Windows Azure: Applications Development
	14.5.1 Local Application Development Setup
	14.5.2 Migrating to the Cloud
	14.5.3 Design for Failure
	14.5.4 Content Caching
	14.5.5 Scaling Database
	14.5.6 Scaling Compute
	14.5.7 Failover

	14.6 Future Research
	14.7 Conclusion
	References

	Chapter 15: A Methodology for Identifying the Relationships Between Performance Factors for Cloud Computing Applications
	15.1 Introduction
	15.2 Literature Review
	15.2.1 Performance Measurement Approaches
	15.2.2 Performance Analysis in Cloud Computing Applications
	15.2.3 Hadoop MapReduce
	15.2.4 ISO 25030 Performance Concepts as System Requirements
	15.2.5 Jain’s System Performance Concepts and Subconcepts
	15.2.6 ISO 25010 Performance Concepts and Subconcepts
	15.2.7 Relationship Between Performance Measurement Concepts and Subconcepts

	15.3 A Methodology to Analyze Relationships Across Performance Factors
	15.3.1 Definition of the Problem
	15.3.2 Taguchi’ s Method of Experimental Design

	15.4 Experiment
	15.4.1 Experimental Setup
	15.4.2 Definition of Factors and Quality Objective
	15.4.3 Experiment Development
	15.4.4 Analysis and Interpretation of Results

	15.5 Statistical Data Analysis
	15.6 Summary
	References

	Index

